备注
Go to the end 下载完整的示例代码。或者通过浏览器中的MysterLite或Binder运行此示例
概率校准曲线#
在进行分类时,人们通常不仅要预测类别标签,还要预测相关的概率。这个概率给出了预测的某种置信度。此示例演示如何使用校准曲线(也称为可靠性图)可视化预测概率的校准程度。还将演示未校准分类器的校准。
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
数据集#
我们将使用具有100,000个样本和20个特征的合成二元分类数据集。在20个特征中,只有2个是信息性的,10个是多余的(信息性特征的随机组合),其余8个是无信息性的(随机数)。在100,000个样本中,1,000个将用于模型匹配,其余用于测试。
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
X, y = make_classification(
n_samples=100_000, n_features=20, n_informative=2, n_redundant=10, random_state=42
)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.99, random_state=42
)
校准曲线#
高斯天真的Bayes#
首先,我们将比较:
LogisticRegression
(used作为基线,因为通常,由于使用了对数损失,适当正则化的逻辑回归在默认情况下得到了很好的校准)未校准
GaussianNB
GaussianNB
具有等张和S形校准(请参阅 User Guide )
下面绘制了所有4种条件的校准曲线,x轴上是每个箱的平均预测概率,y轴上是每个箱中阳性类别的分数。
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
from sklearn.calibration import CalibratedClassifierCV, CalibrationDisplay
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
lr = LogisticRegression(C=1.0)
gnb = GaussianNB()
gnb_isotonic = CalibratedClassifierCV(gnb, cv=2, method="isotonic")
gnb_sigmoid = CalibratedClassifierCV(gnb, cv=2, method="sigmoid")
clf_list = [
(lr, "Logistic"),
(gnb, "Naive Bayes"),
(gnb_isotonic, "Naive Bayes + Isotonic"),
(gnb_sigmoid, "Naive Bayes + Sigmoid"),
]
fig = plt.figure(figsize=(10, 10))
gs = GridSpec(4, 2)
colors = plt.get_cmap("Dark2")
ax_calibration_curve = fig.add_subplot(gs[:2, :2])
calibration_displays = {}
for i, (clf, name) in enumerate(clf_list):
clf.fit(X_train, y_train)
display = CalibrationDisplay.from_estimator(
clf,
X_test,
y_test,
n_bins=10,
name=name,
ax=ax_calibration_curve,
color=colors(i),
)
calibration_displays[name] = display
ax_calibration_curve.grid()
ax_calibration_curve.set_title("Calibration plots (Naive Bayes)")
# Add histogram
grid_positions = [(2, 0), (2, 1), (3, 0), (3, 1)]
for i, (_, name) in enumerate(clf_list):
row, col = grid_positions[i]
ax = fig.add_subplot(gs[row, col])
ax.hist(
calibration_displays[name].y_prob,
range=(0, 1),
bins=10,
label=name,
color=colors(i),
)
ax.set(title=name, xlabel="Mean predicted probability", ylabel="Count")
plt.tight_layout()
plt.show()

未校准 GaussianNB
由于冗余特征违反了特征独立性的假设并导致过度自信的分类器,因此校准不良,这由典型的转置S形曲线表示。概率的校准 GaussianNB
与 保序回归 可以解决这个问题,正如从几乎对角线的校准曲线可以看出的那样。 Sigmoid regression 也稍微改善了校准,尽管不如非参数等张回归那么强烈。这可以归因于我们有大量的校准数据,因此可以利用非参数模型的更大灵活性。
下面我们将考虑几个分类指标进行定量分析: Brier score loss , 对数损失 , precision, recall, F1 score 和 ROC AUC .
from collections import defaultdict
import pandas as pd
from sklearn.metrics import (
brier_score_loss,
f1_score,
log_loss,
precision_score,
recall_score,
roc_auc_score,
)
scores = defaultdict(list)
for i, (clf, name) in enumerate(clf_list):
clf.fit(X_train, y_train)
y_prob = clf.predict_proba(X_test)
y_pred = clf.predict(X_test)
scores["Classifier"].append(name)
for metric in [brier_score_loss, log_loss, roc_auc_score]:
score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize()
scores[score_name].append(metric(y_test, y_prob[:, 1]))
for metric in [precision_score, recall_score, f1_score]:
score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize()
scores[score_name].append(metric(y_test, y_pred))
score_df = pd.DataFrame(scores).set_index("Classifier")
score_df.round(decimals=3)
score_df
请注意,尽管校准改善了 Brier score loss (由校准项和细化项组成的指标)和 对数损失 ,它不会显着改变预测准确性指标(精确度、召回率和F1评分)。这是因为校准不应显着改变决策阈值位置(图表上x = 0.5)的预测概率。然而,校准应该使预测概率更加准确,从而更有助于在不确定性下做出分配决策。此外,ROC AUC根本不应该改变,因为校准是单调变换。事实上,排名指标不会受到校准的影响。
线性支持载体分类器#
接下来,我们将比较:
LogisticRegression
(基线)未校准
LinearSVC
.由于CSV默认不输出概率,因此我们天真地缩放 decision_function 成 [0, 1] 通过应用最小-最大缩放。LinearSVC
具有等张和S形校准(请参阅 User Guide )
import numpy as np
from sklearn.svm import LinearSVC
class NaivelyCalibratedLinearSVC(LinearSVC):
"""LinearSVC with `predict_proba` method that naively scales
`decision_function` output for binary classification."""
def fit(self, X, y):
super().fit(X, y)
df = self.decision_function(X)
self.df_min_ = df.min()
self.df_max_ = df.max()
def predict_proba(self, X):
"""Min-max scale output of `decision_function` to [0, 1]."""
df = self.decision_function(X)
calibrated_df = (df - self.df_min_) / (self.df_max_ - self.df_min_)
proba_pos_class = np.clip(calibrated_df, 0, 1)
proba_neg_class = 1 - proba_pos_class
proba = np.c_[proba_neg_class, proba_pos_class]
return proba
lr = LogisticRegression(C=1.0)
svc = NaivelyCalibratedLinearSVC(max_iter=10_000)
svc_isotonic = CalibratedClassifierCV(svc, cv=2, method="isotonic")
svc_sigmoid = CalibratedClassifierCV(svc, cv=2, method="sigmoid")
clf_list = [
(lr, "Logistic"),
(svc, "SVC"),
(svc_isotonic, "SVC + Isotonic"),
(svc_sigmoid, "SVC + Sigmoid"),
]
fig = plt.figure(figsize=(10, 10))
gs = GridSpec(4, 2)
ax_calibration_curve = fig.add_subplot(gs[:2, :2])
calibration_displays = {}
for i, (clf, name) in enumerate(clf_list):
clf.fit(X_train, y_train)
display = CalibrationDisplay.from_estimator(
clf,
X_test,
y_test,
n_bins=10,
name=name,
ax=ax_calibration_curve,
color=colors(i),
)
calibration_displays[name] = display
ax_calibration_curve.grid()
ax_calibration_curve.set_title("Calibration plots (SVC)")
# Add histogram
grid_positions = [(2, 0), (2, 1), (3, 0), (3, 1)]
for i, (_, name) in enumerate(clf_list):
row, col = grid_positions[i]
ax = fig.add_subplot(gs[row, col])
ax.hist(
calibration_displays[name].y_prob,
range=(0, 1),
bins=10,
label=name,
color=colors(i),
)
ax.set(title=name, xlabel="Mean predicted probability", ylabel="Count")
plt.tight_layout()
plt.show()

LinearSVC
表现出相反的行为 GaussianNB
;校准曲线具有Sigmoid形状,这对于信心不足的分类器来说是典型的。的情况下 LinearSVC
这是由铰链损失的裕度属性引起的,其集中在接近决策边界(支持向量)的样本上。远离决策边界的样本不会影响铰链损失。因此, LinearSVC
不尝试分离高置信度区域中的样本。这导致在0和1附近的校准曲线更平坦,并且在Niculescu-Mizil & Caruana中的各种数据集上以经验显示 [1].
两种校准(S型和等张)都可以解决这个问题并产生类似的结果。
与之前一样,我们展示了 Brier score loss , 对数损失 , precision, recall, F1 score 和 ROC AUC .
scores = defaultdict(list)
for i, (clf, name) in enumerate(clf_list):
clf.fit(X_train, y_train)
y_prob = clf.predict_proba(X_test)
y_pred = clf.predict(X_test)
scores["Classifier"].append(name)
for metric in [brier_score_loss, log_loss, roc_auc_score]:
score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize()
scores[score_name].append(metric(y_test, y_prob[:, 1]))
for metric in [precision_score, recall_score, f1_score]:
score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize()
scores[score_name].append(metric(y_test, y_pred))
score_df = pd.DataFrame(scores).set_index("Classifier")
score_df.round(decimals=3)
score_df
如同 GaussianNB
以上,校准改善了两者 Brier score loss 和 对数损失 但不会太大改变预测准确性指标(精确度、召回率和F1得分)。
总结#
参数Sigmoid校准可以处理基本分类器的校准曲线为Sigmoid的情况(例如,为 LinearSVC
)但不是在它被调换的位置-S形(例如, GaussianNB
).非参数等张校准可以处理这两种情况,但可能需要更多数据才能产生良好的结果。
引用#
Total running time of the script: (0分1.955秒)
相关实例
Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>
_