随机森林的OOB错误#

RandomForestClassifier 接受过训练 bootstrap aggregation ,其中每棵新树都是根据训练观察的引导样本进行的 \(z_i = (x_i, y_i)\) .的 out-of-bag (OOB)误差是每个的平均误差 \(z_i\) 使用不包含 \(z_i\) 在各自的自助样本中。这允许 RandomForestClassifier 在接受培训时保持健康并得到验证 [1].

下面的示例演示了如何在训练期间添加每棵新树时测量OOB误差。由此产生的情节允许从业者逼近合适的值 n_estimators 此时误差稳定。

plot ensemble oob
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

from collections import OrderedDict

import matplotlib.pyplot as plt

from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier

RANDOM_STATE = 123

# Generate a binary classification dataset.
X, y = make_classification(
    n_samples=500,
    n_features=25,
    n_clusters_per_class=1,
    n_informative=15,
    random_state=RANDOM_STATE,
)

# NOTE: Setting the `warm_start` construction parameter to `True` disables
# support for parallelized ensembles but is necessary for tracking the OOB
# error trajectory during training.
ensemble_clfs = [
    (
        "RandomForestClassifier, max_features='sqrt'",
        RandomForestClassifier(
            warm_start=True,
            oob_score=True,
            max_features="sqrt",
            random_state=RANDOM_STATE,
        ),
    ),
    (
        "RandomForestClassifier, max_features='log2'",
        RandomForestClassifier(
            warm_start=True,
            max_features="log2",
            oob_score=True,
            random_state=RANDOM_STATE,
        ),
    ),
    (
        "RandomForestClassifier, max_features=None",
        RandomForestClassifier(
            warm_start=True,
            max_features=None,
            oob_score=True,
            random_state=RANDOM_STATE,
        ),
    ),
]

# Map a classifier name to a list of (<n_estimators>, <error rate>) pairs.
error_rate = OrderedDict((label, []) for label, _ in ensemble_clfs)

# Range of `n_estimators` values to explore.
min_estimators = 15
max_estimators = 150

for label, clf in ensemble_clfs:
    for i in range(min_estimators, max_estimators + 1, 5):
        clf.set_params(n_estimators=i)
        clf.fit(X, y)

        # Record the OOB error for each `n_estimators=i` setting.
        oob_error = 1 - clf.oob_score_
        error_rate[label].append((i, oob_error))

# Generate the "OOB error rate" vs. "n_estimators" plot.
for label, clf_err in error_rate.items():
    xs, ys = zip(*clf_err)
    plt.plot(xs, ys, label=label)

plt.xlim(min_estimators, max_estimators)
plt.xlabel("n_estimators")
plt.ylabel("OOB error rate")
plt.legend(loc="upper right")
plt.show()

Total running time of the script: (0分2.948秒)

相关实例

梯度提升袋外估计

Gradient Boosting Out-of-Bag estimates

使用树木集合的特征转换

Feature transformations with ensembles of trees

在虹膜数据集中绘制树木集合的决策面

Plot the decision surfaces of ensembles of trees on the iris dataset

连续减半迭代

Successive Halving Iterations

Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io> _