压缩感知:使用L1先验进行断层扫描重建(Lasso)#

该示例显示了从一组平行投影重建图像,这些投影是沿不同角度采集的。这样的数据集是在 computed tomography (CT)。

在没有关于样本的任何先验信息的情况下,重建图像所需的投影数量与线性尺寸相当 l 图像(以像素为单位)。为了简单起见,我们在这里考虑稀疏图像,其中只有对象边界上的像素具有非零值。这样的数据可以对应于例如细胞材料。然而,请注意,大多数图像在不同的基础上是稀疏的,例如Haar小波。只 l/7 获取了投影,因此有必要使用样本(其稀疏性)上可用的先验信息:这是 compressive sensing .

断层扫描投影操作是线性变换。除了对应于线性回归的数据保真度项外,我们还惩罚图像的L1规范以解释其稀疏性。由此产生的优化问题称为 Lasso .我们使用类 Lasso ,它使用坐标下降算法。重要的是,这种实现在稀疏矩阵上的计算效率比这里使用的投影算子更高。

即使将噪音添加到投影中,L1惩罚重建也会给出零误差的结果(所有像素都成功标记为0或1)。相比之下,L2处罚 (Ridge )会产生大量像素的标记错误。与L1惩罚相反,在重建图像上观察到重要的伪影。特别请注意,将角部像素分开的圆形伪影,这导致的投影比中央圆盘少。

original image, L2 penalization, L1 penalization
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import matplotlib.pyplot as plt
import numpy as np
from scipy import ndimage, sparse

from sklearn.linear_model import Lasso, Ridge


def _weights(x, dx=1, orig=0):
    x = np.ravel(x)
    floor_x = np.floor((x - orig) / dx).astype(np.int64)
    alpha = (x - orig - floor_x * dx) / dx
    return np.hstack((floor_x, floor_x + 1)), np.hstack((1 - alpha, alpha))


def _generate_center_coordinates(l_x):
    X, Y = np.mgrid[:l_x, :l_x].astype(np.float64)
    center = l_x / 2.0
    X += 0.5 - center
    Y += 0.5 - center
    return X, Y


def build_projection_operator(l_x, n_dir):
    """Compute the tomography design matrix.

    Parameters
    ----------

    l_x : int
        linear size of image array

    n_dir : int
        number of angles at which projections are acquired.

    Returns
    -------
    p : sparse matrix of shape (n_dir l_x, l_x**2)
    """
    X, Y = _generate_center_coordinates(l_x)
    angles = np.linspace(0, np.pi, n_dir, endpoint=False)
    data_inds, weights, camera_inds = [], [], []
    data_unravel_indices = np.arange(l_x**2)
    data_unravel_indices = np.hstack((data_unravel_indices, data_unravel_indices))
    for i, angle in enumerate(angles):
        Xrot = np.cos(angle) * X - np.sin(angle) * Y
        inds, w = _weights(Xrot, dx=1, orig=X.min())
        mask = np.logical_and(inds >= 0, inds < l_x)
        weights += list(w[mask])
        camera_inds += list(inds[mask] + i * l_x)
        data_inds += list(data_unravel_indices[mask])
    proj_operator = sparse.coo_matrix((weights, (camera_inds, data_inds)))
    return proj_operator


def generate_synthetic_data():
    """Synthetic binary data"""
    rs = np.random.RandomState(0)
    n_pts = 36
    x, y = np.ogrid[0:l, 0:l]
    mask_outer = (x - l / 2.0) ** 2 + (y - l / 2.0) ** 2 < (l / 2.0) ** 2
    mask = np.zeros((l, l))
    points = l * rs.rand(2, n_pts)
    mask[(points[0]).astype(int), (points[1]).astype(int)] = 1
    mask = ndimage.gaussian_filter(mask, sigma=l / n_pts)
    res = np.logical_and(mask > mask.mean(), mask_outer)
    return np.logical_xor(res, ndimage.binary_erosion(res))


# Generate synthetic images, and projections
l = 128
proj_operator = build_projection_operator(l, l // 7)
data = generate_synthetic_data()
proj = proj_operator @ data.ravel()[:, np.newaxis]
proj += 0.15 * np.random.randn(*proj.shape)

# Reconstruction with L2 (Ridge) penalization
rgr_ridge = Ridge(alpha=0.2)
rgr_ridge.fit(proj_operator, proj.ravel())
rec_l2 = rgr_ridge.coef_.reshape(l, l)

# Reconstruction with L1 (Lasso) penalization
# the best value of alpha was determined using cross validation
# with LassoCV
rgr_lasso = Lasso(alpha=0.001)
rgr_lasso.fit(proj_operator, proj.ravel())
rec_l1 = rgr_lasso.coef_.reshape(l, l)

plt.figure(figsize=(8, 3.3))
plt.subplot(131)
plt.imshow(data, cmap=plt.cm.gray, interpolation="nearest")
plt.axis("off")
plt.title("original image")
plt.subplot(132)
plt.imshow(rec_l2, cmap=plt.cm.gray, interpolation="nearest")
plt.title("L2 penalization")
plt.axis("off")
plt.subplot(133)
plt.imshow(rec_l1, cmap=plt.cm.gray, interpolation="nearest")
plt.title("L1 penalization")
plt.axis("off")

plt.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0, right=1)

plt.show()

Total running time of the script: (0分9.145秒)

相关实例

用于图像分割的光谱集群

Spectral clustering for image segmentation

硬币图像上的结构化Ward分层集群演示

A demo of structured Ward hierarchical clustering on an image of coins

基于L1的稀疏信号模型

L1-based models for Sparse Signals

分层集群:结构化与非结构化病房

Hierarchical clustering: structured vs unstructured ward

Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io> _