在scikit-learn中可视化交叉验证行为#

选择正确的交叉验证对象是正确匹配模型的关键部分。有很多方法可以将数据拆分为训练集和测试集,以避免模型过度匹配、标准化测试集中的组数量等。

这个例子可视化了几个常见的scikit-learn对象的行为以供比较。

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Patch

from sklearn.model_selection import (
    GroupKFold,
    GroupShuffleSplit,
    KFold,
    ShuffleSplit,
    StratifiedGroupKFold,
    StratifiedKFold,
    StratifiedShuffleSplit,
    TimeSeriesSplit,
)

rng = np.random.RandomState(1338)
cmap_data = plt.cm.Paired
cmap_cv = plt.cm.coolwarm
n_splits = 4

可视化我们的数据#

首先,我们必须了解数据的结构。它有100个随机生成的输入数据点,3个类在数据点之间不均匀地划分,10个“组”在数据点之间均匀地划分。

正如我们将看到的那样,一些交叉验证对象对已标记的数据执行特定的操作,另一些对象对分组数据的行为不同,而另一些对象则不使用此信息。

首先,我们将可视化我们的数据。

# Generate the class/group data
n_points = 100
X = rng.randn(100, 10)

percentiles_classes = [0.1, 0.3, 0.6]
y = np.hstack([[ii] * int(100 * perc) for ii, perc in enumerate(percentiles_classes)])

# Generate uneven groups
group_prior = rng.dirichlet([2] * 10)
groups = np.repeat(np.arange(10), rng.multinomial(100, group_prior))


def visualize_groups(classes, groups, name):
    # Visualize dataset groups
    fig, ax = plt.subplots()
    ax.scatter(
        range(len(groups)),
        [0.5] * len(groups),
        c=groups,
        marker="_",
        lw=50,
        cmap=cmap_data,
    )
    ax.scatter(
        range(len(groups)),
        [3.5] * len(groups),
        c=classes,
        marker="_",
        lw=50,
        cmap=cmap_data,
    )
    ax.set(
        ylim=[-1, 5],
        yticks=[0.5, 3.5],
        yticklabels=["Data\ngroup", "Data\nclass"],
        xlabel="Sample index",
    )


visualize_groups(y, groups, "no groups")
plot cv indices

定义一个函数来可视化交叉验证行为#

我们将定义一个函数,让我们可视化每个交叉验证对象的行为。我们将执行4次数据拆分。在每次拆分时,我们将可视化为训练集(蓝色)和测试集(红色)选择的索引。

def plot_cv_indices(cv, X, y, group, ax, n_splits, lw=10):
    """Create a sample plot for indices of a cross-validation object."""
    use_groups = "Group" in type(cv).__name__
    groups = group if use_groups else None
    # Generate the training/testing visualizations for each CV split
    for ii, (tr, tt) in enumerate(cv.split(X=X, y=y, groups=groups)):
        # Fill in indices with the training/test groups
        indices = np.array([np.nan] * len(X))
        indices[tt] = 1
        indices[tr] = 0

        # Visualize the results
        ax.scatter(
            range(len(indices)),
            [ii + 0.5] * len(indices),
            c=indices,
            marker="_",
            lw=lw,
            cmap=cmap_cv,
            vmin=-0.2,
            vmax=1.2,
        )

    # Plot the data classes and groups at the end
    ax.scatter(
        range(len(X)), [ii + 1.5] * len(X), c=y, marker="_", lw=lw, cmap=cmap_data
    )

    ax.scatter(
        range(len(X)), [ii + 2.5] * len(X), c=group, marker="_", lw=lw, cmap=cmap_data
    )

    # Formatting
    yticklabels = list(range(n_splits)) + ["class", "group"]
    ax.set(
        yticks=np.arange(n_splits + 2) + 0.5,
        yticklabels=yticklabels,
        xlabel="Sample index",
        ylabel="CV iteration",
        ylim=[n_splits + 2.2, -0.2],
        xlim=[0, 100],
    )
    ax.set_title("{}".format(type(cv).__name__), fontsize=15)
    return ax

让我们看看它的外观如何 KFold 交叉验证对象:

fig, ax = plt.subplots()
cv = KFold(n_splits)
plot_cv_indices(cv, X, y, groups, ax, n_splits)
KFold
<Axes: title={'center': 'KFold'}, xlabel='Sample index', ylabel='CV iteration'>

正如您所看到的,默认情况下,KFold交叉验证迭代器不考虑数据点类或组。我们可以通过使用以下任一项来更改此设置:

  • StratifiedKFold 以保留每个类别的样本百分比。

  • GroupKFold 以确保同一组不会出现在两个不同的折痕中。

  • StratifiedGroupKFold 保持…的约束 GroupKFold 同时试图恢复分层褶皱。

cvs = [StratifiedKFold, GroupKFold, StratifiedGroupKFold]

for cv in cvs:
    fig, ax = plt.subplots(figsize=(6, 3))
    plot_cv_indices(cv(n_splits), X, y, groups, ax, n_splits)
    ax.legend(
        [Patch(color=cmap_cv(0.8)), Patch(color=cmap_cv(0.02))],
        ["Testing set", "Training set"],
        loc=(1.02, 0.8),
    )
    # Make the legend fit
    plt.tight_layout()
    fig.subplots_adjust(right=0.7)
  • StratifiedKFold
  • GroupKFold
  • StratifiedGroupKFold

接下来,我们将可视化许多CV迭代器的这种行为。

可视化许多CV对象的交叉验证索引#

让我们直观地比较许多scikit-learn交叉验证对象的交叉验证行为。下面我们将循环浏览几个常见的交叉验证对象,可视化每个对象的行为。

请注意,有些人如何使用组/班级信息,而另一些人则不使用。

cvs = [
    KFold,
    GroupKFold,
    ShuffleSplit,
    StratifiedKFold,
    StratifiedGroupKFold,
    GroupShuffleSplit,
    StratifiedShuffleSplit,
    TimeSeriesSplit,
]


for cv in cvs:
    this_cv = cv(n_splits=n_splits)
    fig, ax = plt.subplots(figsize=(6, 3))
    plot_cv_indices(this_cv, X, y, groups, ax, n_splits)

    ax.legend(
        [Patch(color=cmap_cv(0.8)), Patch(color=cmap_cv(0.02))],
        ["Testing set", "Training set"],
        loc=(1.02, 0.8),
    )
    # Make the legend fit
    plt.tight_layout()
    fig.subplots_adjust(right=0.7)
plt.show()
  • KFold
  • GroupKFold
  • ShuffleSplit
  • StratifiedKFold
  • StratifiedGroupKFold
  • GroupShuffleSplit
  • StratifiedShuffleSplit
  • TimeSeriesSplit

Total running time of the script: (0分0.898秒)

相关实例

具有交叉验证的接收器工作特性(ROC)

Receiver Operating Characteristic (ROC) with cross validation

嵌套与非嵌套交叉验证

Nested versus non-nested cross-validation

scikit-learn 1.4的发布亮点

Release Highlights for scikit-learn 1.4

标签传播数字:主动学习

Label Propagation digits: Active learning

Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io> _