备注
Go to the end 下载完整的示例代码。或者通过浏览器中的MysterLite或Binder运行此示例
二分K均值和常规K均值性能比较#
此示例显示了正则K-Means算法和对分K-Means算法之间的差异。
虽然增加n_clusters时K-Means集群会有所不同,但Bitecting K-Means集群是在之前的集群之上构建的。因此,它往往会创建具有更规则的大规模结构的集群。这种差异可以通过视觉观察到:对于所有数量的集群,BisectingKMeans有一条分界线将整个数据云切成两半,而常规K-Means则不存在。

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import matplotlib.pyplot as plt
from sklearn.cluster import BisectingKMeans, KMeans
from sklearn.datasets import make_blobs
print(__doc__)
# Generate sample data
n_samples = 10000
random_state = 0
X, _ = make_blobs(n_samples=n_samples, centers=2, random_state=random_state)
# Number of cluster centers for KMeans and BisectingKMeans
n_clusters_list = [4, 8, 16]
# Algorithms to compare
clustering_algorithms = {
"Bisecting K-Means": BisectingKMeans,
"K-Means": KMeans,
}
# Make subplots for each variant
fig, axs = plt.subplots(
len(clustering_algorithms), len(n_clusters_list), figsize=(12, 5)
)
axs = axs.T
for i, (algorithm_name, Algorithm) in enumerate(clustering_algorithms.items()):
for j, n_clusters in enumerate(n_clusters_list):
algo = Algorithm(n_clusters=n_clusters, random_state=random_state, n_init=3)
algo.fit(X)
centers = algo.cluster_centers_
axs[j, i].scatter(X[:, 0], X[:, 1], s=10, c=algo.labels_)
axs[j, i].scatter(centers[:, 0], centers[:, 1], c="r", s=20)
axs[j, i].set_title(f"{algorithm_name} : {n_clusters} clusters")
# Hide x labels and tick labels for top plots and y ticks for right plots.
for ax in axs.flat:
ax.label_outer()
ax.set_xticks([])
ax.set_yticks([])
plt.show()
Total running time of the script: (0分0.889秒)
相关实例
Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>
_