备注
Go to the end 下载完整的示例代码。或者通过浏览器中的MysterLite或Binder运行此示例
__sklearn_is_fitted__
作为开发人员API#
的 __sklearn_is_fitted__
方法是scikit-learn中使用的一种惯例,用于检查估计器对象是否已被匹配。此方法通常在自定义估计器类中实现,这些类是在scikit-learn的基本类之上构建的,例如 BaseEstimator
或其子集。
开发人员应该使用 check_is_fitted
在所有方法的开头,除了 fit
. If they need to customize or speed-up the check, they can implement the `_ _sklearn_is_fitted__'方法如下所示。
在此示例中,自定义估计器展示了 __sklearn_is_fitted__
method and the check_is_fitted
utility function as developer APIs. The _ _sklearn_is_fitted__`方法通过验证 `_is_fitted
属性
实现简单分类器的自定义估计器示例#
此代码片段定义了一个名为 CustomEstimator
that extends both the BaseEstimator
and ClassifierMixin
classes from scikit-learn and showcases the usage of the _ _sklearn_is_fit_'方法和 `check_is_fitted
实用功能。
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.utils.validation import check_is_fitted
class CustomEstimator(BaseEstimator, ClassifierMixin):
def __init__(self, parameter=1):
self.parameter = parameter
def fit(self, X, y):
"""
Fit the estimator to the training data.
"""
self.classes_ = sorted(set(y))
# Custom attribute to track if the estimator is fitted
self._is_fitted = True
return self
def predict(self, X):
"""
Perform Predictions
If the estimator is not fitted, then raise NotFittedError
"""
check_is_fitted(self)
# Perform prediction logic
predictions = [self.classes_[0]] * len(X)
return predictions
def score(self, X, y):
"""
Calculate Score
If the estimator is not fitted, then raise NotFittedError
"""
check_is_fitted(self)
# Perform scoring logic
return 0.5
def __sklearn_is_fitted__(self):
"""
Check fitted status and return a Boolean value.
"""
return hasattr(self, "_is_fitted") and self._is_fitted
相关实例

Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>
_