均值漂移集群算法的演示#

参考:

Dorin Comaniciu和Peter Meer,“Mean Shift:一种面向特征空间分析的鲁棒方法”。IEEE模式分析和机器智能汇刊。2002. pp. 603-619.

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import numpy as np

from sklearn.cluster import MeanShift, estimate_bandwidth
from sklearn.datasets import make_blobs

生成示例数据#

centers = [[1, 1], [-1, -1], [1, -1]]
X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6)

使用MeanChange计算集群#

# The following bandwidth can be automatically detected using
bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500)

ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(X)
labels = ms.labels_
cluster_centers = ms.cluster_centers_

labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)

print("number of estimated clusters : %d" % n_clusters_)
number of estimated clusters : 3

情节结果#

import matplotlib.pyplot as plt

plt.figure(1)
plt.clf()

colors = ["#dede00", "#377eb8", "#f781bf"]
markers = ["x", "o", "^"]

for k, col in zip(range(n_clusters_), colors):
    my_members = labels == k
    cluster_center = cluster_centers[k]
    plt.plot(X[my_members, 0], X[my_members, 1], markers[k], color=col)
    plt.plot(
        cluster_center[0],
        cluster_center[1],
        markers[k],
        markerfacecolor=col,
        markeredgecolor="k",
        markersize=14,
    )
plt.title("Estimated number of clusters: %d" % n_clusters_)
plt.show()
Estimated number of clusters: 3

Total running time of the script: (0分0.355秒)

相关实例

亲和力传播分簇算法演示

Demo of affinity propagation clustering algorithm

K-Means和MiniBatchKMeans集群算法的比较

Comparison of the K-Means and MiniBatchKMeans clustering algorithms

DBSCAN集群算法演示

Demo of DBSCAN clustering algorithm

K-Means++初始化的示例

An example of K-Means++ initialization

Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io> _