图分层聚集树图#

此示例使用AgglomerativeRussering和scipy中可用的树图方法绘制分层集群的相应树图。

Hierarchical Clustering Dendrogram
import numpy as np
from matplotlib import pyplot as plt
from scipy.cluster.hierarchy import dendrogram

from sklearn.cluster import AgglomerativeClustering
from sklearn.datasets import load_iris


def plot_dendrogram(model, **kwargs):
    # Create linkage matrix and then plot the dendrogram

    # create the counts of samples under each node
    counts = np.zeros(model.children_.shape[0])
    n_samples = len(model.labels_)
    for i, merge in enumerate(model.children_):
        current_count = 0
        for child_idx in merge:
            if child_idx < n_samples:
                current_count += 1  # leaf node
            else:
                current_count += counts[child_idx - n_samples]
        counts[i] = current_count

    linkage_matrix = np.column_stack(
        [model.children_, model.distances_, counts]
    ).astype(float)

    # Plot the corresponding dendrogram
    dendrogram(linkage_matrix, **kwargs)


iris = load_iris()
X = iris.data

# setting distance_threshold=0 ensures we compute the full tree.
model = AgglomerativeClustering(distance_threshold=0, n_clusters=None)

model = model.fit(X)
plt.title("Hierarchical Clustering Dendrogram")
# plot the top three levels of the dendrogram
plot_dendrogram(model, truncate_mode="level", p=3)
plt.xlabel("Number of points in node (or index of point if no parenthesis).")
plt.show()

Total running time of the script: (0分0.065秒)

相关实例

了解决策树结构

Understanding the decision tree structure

硬币图像上的结构化Ward分层集群演示

A demo of structured Ward hierarchical clustering on an image of coins

分层集群:结构化与非结构化病房

Hierarchical clustering: structured vs unstructured ward

在玩具数据集上比较不同的分层链接方法

Comparing different hierarchical linkage methods on toy datasets

Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io> _