Ledoit-Wolf与OAS估计#

通常的协方差最大似然估计可以使用收缩进行正规化。Ledoit-Wolf提出了一个封闭的公式来计算渐进最优收缩参数(最小化SSE标准),从而产生Ledoit-Wolf协方差估计。

Chen等人提出了对Ledoit-Wolf收缩参数OAS系数的改进,在假设数据为高斯的情况下,其收敛性明显更好。

这个例子,灵感来自陈的出版物 [1] ,显示了使用高斯分布数据对LW和OAS方法估计的SSE进行比较。

[1] “用于MMSE协方差估计的收缩算法”Chen等人,IEEE Trans. on Sign。程序。,第58卷,第10期,2010年10月。

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import matplotlib.pyplot as plt
import numpy as np
from scipy.linalg import cholesky, toeplitz

from sklearn.covariance import OAS, LedoitWolf

np.random.seed(0)
n_features = 100
# simulation covariance matrix (AR(1) process)
r = 0.1
real_cov = toeplitz(r ** np.arange(n_features))
coloring_matrix = cholesky(real_cov)

n_samples_range = np.arange(6, 31, 1)
repeat = 100
lw_mse = np.zeros((n_samples_range.size, repeat))
oa_mse = np.zeros((n_samples_range.size, repeat))
lw_shrinkage = np.zeros((n_samples_range.size, repeat))
oa_shrinkage = np.zeros((n_samples_range.size, repeat))
for i, n_samples in enumerate(n_samples_range):
    for j in range(repeat):
        X = np.dot(np.random.normal(size=(n_samples, n_features)), coloring_matrix.T)

        lw = LedoitWolf(store_precision=False, assume_centered=True)
        lw.fit(X)
        lw_mse[i, j] = lw.error_norm(real_cov, scaling=False)
        lw_shrinkage[i, j] = lw.shrinkage_

        oa = OAS(store_precision=False, assume_centered=True)
        oa.fit(X)
        oa_mse[i, j] = oa.error_norm(real_cov, scaling=False)
        oa_shrinkage[i, j] = oa.shrinkage_

# plot MSE
plt.subplot(2, 1, 1)
plt.errorbar(
    n_samples_range,
    lw_mse.mean(1),
    yerr=lw_mse.std(1),
    label="Ledoit-Wolf",
    color="navy",
    lw=2,
)
plt.errorbar(
    n_samples_range,
    oa_mse.mean(1),
    yerr=oa_mse.std(1),
    label="OAS",
    color="darkorange",
    lw=2,
)
plt.ylabel("Squared error")
plt.legend(loc="upper right")
plt.title("Comparison of covariance estimators")
plt.xlim(5, 31)

# plot shrinkage coefficient
plt.subplot(2, 1, 2)
plt.errorbar(
    n_samples_range,
    lw_shrinkage.mean(1),
    yerr=lw_shrinkage.std(1),
    label="Ledoit-Wolf",
    color="navy",
    lw=2,
)
plt.errorbar(
    n_samples_range,
    oa_shrinkage.mean(1),
    yerr=oa_shrinkage.std(1),
    label="OAS",
    color="darkorange",
    lw=2,
)
plt.xlabel("n_samples")
plt.ylabel("Shrinkage")
plt.legend(loc="lower right")
plt.ylim(plt.ylim()[0], 1.0 + (plt.ylim()[1] - plt.ylim()[0]) / 10.0)
plt.xlim(5, 31)

plt.show()
Comparison of covariance estimators

Total running time of the script: (0分2.118秒)

相关实例

收缩协方差估计:LedoitWolf vs OAS和最大似然

Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

用于分类的正态、Ledoit-Wolf和OAS线性鉴别分析

Normal, Ledoit-Wolf and OAS Linear Discriminant Analysis for classification

稳健与经验协方差估计

Robust vs Empirical covariance estimate

稀疏逆协方差估计

Sparse inverse covariance estimation

Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io> _