备注
Go to the end 下载完整的示例代码。或者通过浏览器中的MysterLite或Binder运行此示例
在虹膜数据集中绘制不同的支持者分类器#
在虹膜数据集的2D投影上比较不同线性支持者。我们只考虑该数据集的前2个特征:
花瓣长度
花瓣宽度
这个例子展示了如何绘制具有不同内核的四个SVM分类器的决策曲面。
线性模型 LinearSVC()
和 SVC(kernel='linear')
会产生稍微不同的决策边界。这可能是以下差异的结果:
LinearSVC
最大限度地减少铰链损失的平方,SVC
最大限度地减少常规铰链损失。LinearSVC
使用One-vs-All(也称为One-vs-Rest)多类简化,SVC
使用一对一多类简化。
两种线性模型都具有线性决策边界(交叉超平面),而非线性核模型(多项或高斯基函数)具有更灵活的非线性决策边界,其形状取决于核的类型及其参数。
备注
虽然绘制玩具2D数据集分类器的决策函数可以帮助直观地理解它们各自的表达能力,但请注意,这些直觉并不总是概括为更现实的多维问题。

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import matplotlib.pyplot as plt
from sklearn import datasets, svm
from sklearn.inspection import DecisionBoundaryDisplay
# import some data to play with
iris = datasets.load_iris()
# Take the first two features. We could avoid this by using a two-dim dataset
X = iris.data[:, :2]
y = iris.target
# we create an instance of SVM and fit out data. We do not scale our
# data since we want to plot the support vectors
C = 1.0 # SVM regularization parameter
models = (
svm.SVC(kernel="linear", C=C),
svm.LinearSVC(C=C, max_iter=10000),
svm.SVC(kernel="rbf", gamma=0.7, C=C),
svm.SVC(kernel="poly", degree=3, gamma="auto", C=C),
)
models = (clf.fit(X, y) for clf in models)
# title for the plots
titles = (
"SVC with linear kernel",
"LinearSVC (linear kernel)",
"SVC with RBF kernel",
"SVC with polynomial (degree 3) kernel",
)
# Set-up 2x2 grid for plotting.
fig, sub = plt.subplots(2, 2)
plt.subplots_adjust(wspace=0.4, hspace=0.4)
X0, X1 = X[:, 0], X[:, 1]
for clf, title, ax in zip(models, titles, sub.flatten()):
disp = DecisionBoundaryDisplay.from_estimator(
clf,
X,
response_method="predict",
cmap=plt.cm.coolwarm,
alpha=0.8,
ax=ax,
xlabel=iris.feature_names[0],
ylabel=iris.feature_names[1],
)
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors="k")
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(title)
plt.show()
Total running time of the script: (0分0.136秒)
相关实例

Decision boundary of semi-supervised classifiers versus SVM on the Iris dataset
Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>
_