enet_path#

sklearn.linear_model.enet_path(X, y, *, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, check_input=True, **params)[源代码]#

通过坐标下降计算弹性净路径。

弹性网络优化函数针对单输出和多输出而变化。

对于单输出任务,它是::

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

对于多输出任务,它是::

(1 / (2 * n_samples)) * ||Y - XW||_Fro^2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

地点::

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

即每一行的规范之和。

阅读更多的 User Guide .

参数:
X形状(n_samples,n_features)的{类数组,稀疏矩阵}

训练数据。作为Forrester连续数据直接传递,以避免不必要的内存重复。如果 y 那么是单输出 X 可以是稀疏的。

y形状(n_samples,)的{类数组,稀疏矩阵}或 (n_样本,n_目标)

目标值。

l1_ratio浮点数,默认值=0.5

0和1之间的数字传递到弹性网(在l1和l2罚分之间缩放)。 l1_ratio=1 对应于套索。

eps浮点数,默认值= 1 e-3

路径的长度。 eps=1e-3 意味着 alpha_min / alpha_max = 1e-3 .

n_alphasint,默认=100

正规化路径上阿尔法的数量。

alphas类数组,默认=无

在哪里计算模型的阿尔法列表。如果无,则自动设置alpha。

precompute“自动”、布尔或阵列状的形状 (n_features,n_features),默认='自动'

是否使用预先计算的Gram矩阵来加速计算。如果设置为 'auto' 让我们决定。Gram矩阵也可以作为参数传递。

Xy形状类似阵列(n_features,)或(n_features,n_targets), 默认值=无

Xy = np.dot(X.T,y),可以预先计算。只有在预先计算Gram矩阵时,它才有用。

copy_X布尔,默认=True

如果 True ,X将被复制;否则,可能会被覆盖。

coef_init形状类似阵列(n_features,),默认=无

系数的初始值。

verbosebool或int,默认=False

冗长的数量。

return_n_iter布尔,默认=假

是否返回迭代次数。

positive布尔,默认=假

如果设置为True,则强制系数为正。(Only前容 y.ndim == 1 ).

check_input布尔,默认=True

如果设置为False,则跳过输入验证检查(包括提供的Gram矩阵)。假设它们由呼叫者处理。

**paramskwargs

关键字参数传递给坐标下降求解器。

返回:
alphas形状的nd数组(n_alphas,)

沿着模型计算路径的阿尔法。

coefs形状的nd数组(n_features,n_alphas)或 (n_targets,n_features,n_alphas)

沿着路径的系数。

dual_gaps形状的nd数组(n_alphas,)

每个Alpha优化结束时的双重差距。

n_itersint列表

The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. (Is returned when return_n_iter is set to True).

参见

MultiTaskElasticNet

使用L1/L2混合范数训练的多任务ElasticNet模型 作为正则化器

MultiTaskElasticNetCV

多任务L1/L2 ElasticNet,内置交叉验证。

ElasticNet

以L1和L2先验组合作为正规化器的线性回归。

ElasticNetCV

弹性网络模型,沿着规则化路径迭代匹配。

注意到

有关示例,请参阅 examples/linear_model/plot_lasso_lasso_lars_elasticnet_path.py .

示例

>>> from sklearn.linear_model import enet_path
>>> from sklearn.datasets import make_regression
>>> X, y, true_coef = make_regression(
...    n_samples=100, n_features=5, n_informative=2, coef=True, random_state=0
... )
>>> true_coef
array([ 0.        ,  0.        ,  0.        , 97.9..., 45.7...])
>>> alphas, estimated_coef, _ = enet_path(X, y, n_alphas=3)
>>> alphas.shape
(3,)
>>> estimated_coef
 array([[ 0.        ,  0.78...,  0.56...],
        [ 0.        ,  1.12...,  0.61...],
        [-0.        , -2.12..., -1.12...],
        [ 0.        , 23.04..., 88.93...],
        [ 0.        , 10.63..., 41.56...]])