OneToOneFeatureMixin#

class sklearn.base.OneToOneFeatureMixin[源代码]#

提供 get_feature_names_out 对于简单的变压器。

此混合假设输入特征和输出特征之间存在1对1的对应关系,例如 StandardScaler .

示例

>>> import numpy as np
>>> from sklearn.base import OneToOneFeatureMixin, BaseEstimator
>>> class MyEstimator(OneToOneFeatureMixin, BaseEstimator):
...     def fit(self, X, y=None):
...         self.n_features_in_ = X.shape[1]
...         return self
>>> X = np.array([[1, 2], [3, 4]])
>>> MyEstimator().fit(X).get_feature_names_out()
array(['x0', 'x1'], dtype=object)
get_feature_names_out(input_features=None)[源代码]#

获取用于转换的输出要素名称。

参数:
input_features字符串或无的类数组,默认=无

输入功能。

  • 如果 input_featuresNone 那么 feature_names_in_ 在中用作功能名称。如果 feature_names_in_ 未定义,则生成以下输入要素名称: ["x0", "x1", ..., "x(n_features_in_ - 1)"] .

  • 如果 input_features 是一个类似阵列的,那么 input_features 必须匹配 feature_names_in_ 如果 feature_names_in_ 是定义的。

返回:
feature_names_out字符串对象的nd数组

与输入功能相同。