cluster_optics_dbscan#

sklearn.cluster.cluster_optics_dbscan(*, reachability, core_distances, ordering, eps)[源代码]#

对任意收件箱执行DBSCAN提取。

提取集群以线性时间运行。请注意,这会导致 labels_ 它们接近于 DBSCAN 具有相似的设置和 eps ,只有当 eps 接近 max_eps .

参数:
reachability形状的nd数组(n_samples,)

OPTICS计算的可达距离 (reachability_ ).

core_distances形状的nd数组(n_samples,)

成为核心的距离 (core_distances_ ).

ordering形状的nd数组(n_samples,)

OPTICS有序点指数 (ordering_ ).

eps浮子

DBSCAN eps 参数.必须设置为< max_eps .如果结果将接近DBSCAN算法 epsmax_eps 彼此靠近。

返回:
labels_形状数组(n_samples,)

估计的标签。

示例

>>> import numpy as np
>>> from sklearn.cluster import cluster_optics_dbscan, compute_optics_graph
>>> X = np.array([[1, 2], [2, 5], [3, 6],
...               [8, 7], [8, 8], [7, 3]])
>>> ordering, core_distances, reachability, predecessor = compute_optics_graph(
...     X,
...     min_samples=2,
...     max_eps=np.inf,
...     metric="minkowski",
...     p=2,
...     metric_params=None,
...     algorithm="auto",
...     leaf_size=30,
...     n_jobs=None,
... )
>>> eps = 4.5
>>> labels = cluster_optics_dbscan(
...     reachability=reachability,
...     core_distances=core_distances,
...     ordering=ordering,
...     eps=eps,
... )
>>> labels
array([0, 0, 0, 1, 1, 1])