cluster_optics_dbscan#
- sklearn.cluster.cluster_optics_dbscan(*, reachability, core_distances, ordering, eps)[源代码]#
对任意收件箱执行DBSCAN提取。
提取集群以线性时间运行。请注意,这会导致
labels_
它们接近于DBSCAN
具有相似的设置和eps
,只有当eps
接近max_eps
.- 参数:
- reachability形状的nd数组(n_samples,)
OPTICS计算的可达距离 (
reachability_
).- core_distances形状的nd数组(n_samples,)
成为核心的距离 (
core_distances_
).- ordering形状的nd数组(n_samples,)
OPTICS有序点指数 (
ordering_
).- eps浮子
DBSCAN
eps
参数.必须设置为<max_eps
.如果结果将接近DBSCAN算法eps
和max_eps
彼此靠近。
- 返回:
- labels_形状数组(n_samples,)
估计的标签。
示例
>>> import numpy as np >>> from sklearn.cluster import cluster_optics_dbscan, compute_optics_graph >>> X = np.array([[1, 2], [2, 5], [3, 6], ... [8, 7], [8, 8], [7, 3]]) >>> ordering, core_distances, reachability, predecessor = compute_optics_graph( ... X, ... min_samples=2, ... max_eps=np.inf, ... metric="minkowski", ... p=2, ... metric_params=None, ... algorithm="auto", ... leaf_size=30, ... n_jobs=None, ... ) >>> eps = 4.5 >>> labels = cluster_optics_dbscan( ... reachability=reachability, ... core_distances=core_distances, ... ordering=ordering, ... eps=eps, ... ) >>> labels array([0, 0, 0, 1, 1, 1])