TransformerMixin#

class sklearn.base.TransformerMixin[源代码]#

Scikit-learn中所有变形金刚的Mixin课程。

此mixin定义了以下功能:

  • fit_transform 委托给 fittransform ;

  • set_output 输出方法 X 作为特定的容器类型。

如果 get_feature_names_out 被定义了,那么 BaseEstimator 会自动包装 transformfit_transform 遵循 set_output API.看到 开发人员API set_output 有关详细信息

OneToOneFeatureMixinClassNamePrefixFeaturesOutMixin 对于定义有用的混合 get_feature_names_out .

示例

>>> import numpy as np
>>> from sklearn.base import BaseEstimator, TransformerMixin
>>> class MyTransformer(TransformerMixin, BaseEstimator):
...     def __init__(self, *, param=1):
...         self.param = param
...     def fit(self, X, y=None):
...         return self
...     def transform(self, X):
...         return np.full(shape=len(X), fill_value=self.param)
>>> transformer = MyTransformer()
>>> X = [[1, 2], [2, 3], [3, 4]]
>>> transformer.fit_transform(X)
array([1, 1, 1])
fit_transform(X, y=None, **fit_params)[源代码]#

适应数据,然后对其进行转换。

适合变压器 Xy 具有可选参数 fit_params 并返回的转换版本 X .

参数:
X形状类似阵列(n_samples,n_features)

输入样本。

y形状为(n_samples,)或(n_samples,n_outputs)的阵列状, 默认值=无

目标值(无监督转换)。

**fit_paramsdict

其他适合参数。

返回:
X_newndray形状数组(n_samples,n_features_new)

变形的数组。

set_output(*, transform=None)[源代码]#

设置输出容器。

看到 介绍 set_output API 了解如何使用API的示例。

参数:
transform{“默认”,“pandas”,“polars”},默认=无

配置输出 transformfit_transform .

  • "default" :Transformer的默认输出格式

  • "pandas" :DataFrame输出

  • "polars" :两极输出

  • None :转换配置不变

Added in version 1.4: "polars" 添加了选项。

返回:
self估计器实例

估计实例。