KernelCenterer#

class sklearn.preprocessing.KernelCenterer[源代码]#

将任意核矩阵置于中心 \(K\) .

让定义一个内核 \(K\) 这样:

\[K(X,Y)= \phy(X)。\ph(Y)'{T}\]

\(\phi(X)\) 是行的函数映射 \(X\) 到一个希尔伯特空间, \(K\) 形状 (n_samples, n_samples) .

这个类允许计算 \(\tilde{K}(X, Y)\) 这样:

\[\tilde{K(X, Y)} = \tilde{\phi}(X) . \tilde{\phi}(Y)^{T}\]

\(\tilde{\phi}(X)\) 是Hilbert空间中的中心映射数据。

KernelCenterer 使要素居中,而不显式计算映射 \(\phi(\cdot)\) .在处理代数计算(例如特征分解)时,有时预计使用中心核 KernelPCA 譬如说

阅读更多的 User Guide .

属性:
K_fit_rows_形状的nd数组(n_samples,)

核矩阵每列的平均值。

K_fit_all_浮子

核矩阵的平均值。

n_features_in_int

期间看到的功能数量 fit .

Added in version 0.24.

feature_names_in_ :nd形状数组 (n_features_in_ ,)nd数组形状(

Names of features seen during fit. Defined only when X has feature names that are all strings.

Added in version 1.0.

参见

sklearn.kernel_approximation.Nystroem

使用训练数据的子集来逼近内核地图。

引用

[1]

Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller. "Nonlinear component analysis as a kernel eigenvalue problem." Neural computation 10.5 (1998): 1299-1319. <https://www.mlpack.org/papers/kpca.pdf> _

示例

>>> from sklearn.preprocessing import KernelCenterer
>>> from sklearn.metrics.pairwise import pairwise_kernels
>>> X = [[ 1., -2.,  2.],
...      [ -2.,  1.,  3.],
...      [ 4.,  1., -2.]]
>>> K = pairwise_kernels(X, metric='linear')
>>> K
array([[  9.,   2.,  -2.],
       [  2.,  14., -13.],
       [ -2., -13.,  21.]])
>>> transformer = KernelCenterer().fit(K)
>>> transformer
KernelCenterer()
>>> transformer.transform(K)
array([[  5.,   0.,  -5.],
       [  0.,  14., -14.],
       [ -5., -14.,  19.]])
fit(K, y=None)[源代码]#

适合KernelCenter。

参数:
K形状的nd数组(n_samples,n_samples)

核心矩阵。

y没有一

忽视

返回:
self对象

返回实例本身。

fit_transform(X, y=None, **fit_params)[源代码]#

适应数据,然后对其进行转换。

适合变压器 Xy 具有可选参数 fit_params 并返回的转换版本 X .

参数:
X形状类似阵列(n_samples,n_features)

输入样本。

y形状为(n_samples,)或(n_samples,n_outputs)的阵列状, 默认值=无

目标值(无监督转换)。

**fit_paramsdict

其他适合参数。

返回:
X_newndray形状数组(n_samples,n_features_new)

变形的数组。

get_feature_names_out(input_features=None)[源代码]#

获取用于转换的输出要素名称。

输出的功能名称将以大写的类别名称为开头。例如,如果Transformer输出3个特征,则输出的特征名称为: ["class_name0", "class_name1", "class_name2"] .

参数:
input_features字符串或无的类数组,默认=无

仅用于通过中看到的名称验证要素名称 fit .

返回:
feature_names_out字符串对象的nd数组

转换的功能名称。

get_metadata_routing()[源代码]#

获取此对象的元数据路由。

请检查 User Guide 关于路由机制如何工作。

返回:
routingMetadataRequest

A MetadataRequest 封装路由信息。

get_params(deep=True)[源代码]#

获取此估计器的参数。

参数:
deep布尔,默认=True

如果为True,将返回此估计量和包含的作为估计量的子对象的参数。

返回:
paramsdict

参数名称映射到其值。

set_output(*, transform=None)[源代码]#

设置输出容器。

看到 介绍 set_output API 了解如何使用API的示例。

参数:
transform{“默认”,“pandas”,“polars”},默认=无

配置输出 transformfit_transform .

  • "default" :Transformer的默认输出格式

  • "pandas" :DataFrame输出

  • "polars" :两极输出

  • None :转换配置不变

Added in version 1.4: "polars" 添加了选项。

返回:
self估计器实例

估计实例。

set_params(**params)[源代码]#

设置此估计器的参数。

该方法适用于简单估计器以及嵌套对象(例如 Pipeline ).后者具有以下形式的参数 <component>__<parameter> 以便可以更新嵌套对象的每个组件。

参数:
**paramsdict

估计参数。

返回:
self估计器实例

估计实例。

set_transform_request(*, copy: bool | None | str = '$UNCHANGED$') KernelCenterer[源代码]#

请求元数据传递给 transform

请注意,此方法仅适用于以下情况 enable_metadata_routing=True (见 sklearn.set_config ).请参阅 User Guide 关于路由机制如何工作。

The options for each parameter are:

  • True :元数据被请求并传递给 transform 如果提供的话。如果未提供元数据,则会忽略请求。

  • False :未请求元数据,元估计器不会将其传递给 transform .

  • None :不请求元数据,如果用户提供元估计器,则元估计器将引发错误。

  • str :元数据应通过此给定别名而不是原始名称传递给元估计器。

默认 (sklearn.utils.metadata_routing.UNCHANGED )保留现有请求。这允许您更改某些参数的请求,而不是其他参数。

Added in version 1.3.

备注

只有当该估计器用作元估计器的子估计器时,该方法才相关,例如在 Pipeline .否则就没有效果了。

参数:
copy字符串、真、假或无, 默认=sklearn.utils. metalics_Routing.UNChanged

元数据路由 copy 参数 transform .

返回:
self对象

更新的对象。

transform(K, copy=True)[源代码]#

中心核心矩阵。

参数:
K形状的nd数组(n_samples1,n_samples2)

核心矩阵。

copy布尔,默认=True

设置为False以执行就地计算。

返回:
K_new形状的nd数组(n_samples1,n_samples2)

返回实例本身。