产品#
- class sklearn.gaussian_process.kernels.Product(k1, k2)[源代码]#
的
Product
内核需要两个内核 \(k_1\) 和 \(k_2\) 并通过将它们结合起来\[k_{prod}(X,Y)= k_1(X,Y)* k_2(X,Y)\]注意到
__mul__
魔法方法被重写,所以Product(RBF(), RBF())
相当于使用 * operator withRBF() * RBF()
。阅读更多的 User Guide .
Added in version 0.18.
- 参数:
- k1内核
乘积核的第一个基本核
- k2内核
产品内核的第二个基本内核
示例
>>> from sklearn.datasets import make_friedman2 >>> from sklearn.gaussian_process import GaussianProcessRegressor >>> from sklearn.gaussian_process.kernels import (RBF, Product, ... ConstantKernel) >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0) >>> kernel = Product(ConstantKernel(2), RBF()) >>> gpr = GaussianProcessRegressor(kernel=kernel, ... random_state=0).fit(X, y) >>> gpr.score(X, y) 1.0 >>> kernel 1.41**2 * RBF(length_scale=1)
- __call__(X, Y=None, eval_gradient=False)[源代码]#
返回内核k(X,Y)以及可选的其梯度。
- 参数:
- X类似阵列的形状(n_samples_X,n_features)或对象列表
返回的内核k(X,Y)的左参数
- Y类似阵列的形状(n_samples_Y,n_features)或对象列表, 默认值=无
返回的内核k(X,Y)的正确参数。如果无,则改为计算k(X,X)。
- eval_gradient布尔,默认=假
确定是否计算相对于内核超参数日志的梯度。
- 返回:
- K形状的nd数组(n_samples_X,n_samples_Y)
核k(X,Y)
- K_gradientnd形状数组(n_samples_X,n_samples_X,n_dims), 任择
核k(X,X)相对于核超参数log的梯度。只有当
eval_gradient
是真的
- property bounds#
返回theta的log转换边界。
- 返回:
- bounds形状的nd数组(n_dims,2)
核超参数theta的log转换界限
- diag(X)[源代码]#
Returns the diagonal of the kernel k(X, X).
该方法的结果与mp.diag(self(X))相同;但是,由于仅评估对角线,因此可以更有效地评估它。
- 参数:
- X类似阵列的形状(n_samples_X,n_features)或对象列表
参数传递到内核。
- 返回:
- K_diag形状的nd数组(n_samples_X,)
核k(X,X)的对角线
- get_params(deep=True)[源代码]#
获取此内核的参数。
- 参数:
- deep布尔,默认=True
如果为True,将返回此估计量和包含的作为估计量的子对象的参数。
- 返回:
- paramsdict
参数名称映射到其值。
- property hyperparameters#
返回所有超参数的列表。
- property n_dims#
返回内核非固定超参数的数量。
- property requires_vector_input#
返回内核是否静止。
- set_params(**params)[源代码]#
Set the parameters of this kernel.
该方法适用于简单内核和嵌套内核。后者具有以下形式的参数
<component>__<parameter>
以便可以更新嵌套对象的每个组件。- 返回:
- 自我
- property theta#
返回(拉平、日志转换)非固定超参数。
注意,theta通常是内核超参数的对数变换值,因为搜索空间的这种表示更适合超参数搜索,因为像长度尺度这样的超参数自然存在于对数尺度上。
- 返回:
- theta形状的nd数组(n_dims,)
内核的非固定的、经过log转换的超参数