SelectorMixin#

class sklearn.feature_selection.SelectorMixin[源代码]#

Transformer mixin,在给定支持屏蔽的情况下执行功能选择

此mixin提供了功能选择器实现, transform and inverse_transform functionality given an implementation of _ get_support_mask.

示例

>>> import numpy as np
>>> from sklearn.datasets import load_iris
>>> from sklearn.base import BaseEstimator
>>> from sklearn.feature_selection import SelectorMixin
>>> class FeatureSelector(SelectorMixin, BaseEstimator):
...    def fit(self, X, y=None):
...        self.n_features_in_ = X.shape[1]
...        return self
...    def _get_support_mask(self):
...        mask = np.zeros(self.n_features_in_, dtype=bool)
...        mask[:2] = True  # select the first two features
...        return mask
>>> X, y = load_iris(return_X_y=True)
>>> FeatureSelector().fit_transform(X, y).shape
(150, 2)
fit_transform(X, y=None, **fit_params)[源代码]#

适应数据,然后对其进行转换。

适合变压器 Xy 具有可选参数 fit_params 并返回的转换版本 X .

参数:
X形状类似阵列(n_samples,n_features)

输入样本。

y形状为(n_samples,)或(n_samples,n_outputs)的阵列状, 默认值=无

目标值(无监督转换)。

**fit_paramsdict

其他适合参数。

返回:
X_newndray形状数组(n_samples,n_features_new)

变形的数组。

get_feature_names_out(input_features=None)[源代码]#

Mask feature names according to selected features.

参数:
input_features字符串或无的类数组,默认=无

输入功能。

  • 如果 input_featuresNone 那么 feature_names_in_ 在中用作功能名称。如果 feature_names_in_ 未定义,则生成以下输入要素名称: ["x0", "x1", ..., "x(n_features_in_ - 1)"] .

  • 如果 input_features 是一个类似阵列的,那么 input_features 必须匹配 feature_names_in_ 如果 feature_names_in_ 是定义的。

返回:
feature_names_out字符串对象的nd数组

转换的功能名称。

get_support(indices=False)[源代码]#

获取所选要素的屏蔽或整指数。

参数:
indices布尔,默认=假

如果为True,则返回值将是一个integer数组,而不是布尔屏蔽。

返回:
support阵列

从特征载体中选择保留特征的索引。如果 indices 为假,这是形状的布尔数组 [# input features] ,其中只要选择其相应的特征进行保留,元素就为True。如果 indices 是True,这是一个形状的整数组 [# output features] 其值是输入特征载体的索引。

inverse_transform(X)[源代码]#

逆转转型操作。

参数:
X形状数组 [n_samples, n_selected_features]

输入样本。

返回:
X_r形状数组 [n_samples, n_original_features]

X 在将删除要素的位置插入零列 transform .

set_output(*, transform=None)[源代码]#

设置输出容器。

看到 介绍 set_output API 了解如何使用API的示例。

参数:
transform{“默认”,“pandas”,“polars”},默认=无

配置输出 transformfit_transform .

  • "default" :Transformer的默认输出格式

  • "pandas" :DataFrame输出

  • "polars" :两极输出

  • None :转换配置不变

Added in version 1.4: "polars" 添加了选项。

返回:
self估计器实例

估计实例。

transform(X)[源代码]#

Reduce X to the selected features.

参数:
X形状数组 [n_samples, n_features]

输入样本。

返回:
X_r形状数组 [n_samples, n_selected_features]

仅具有选定特征的输入样本。