LinearRegression#

class sklearn.linear_model.LinearRegression(*, fit_intercept=True, copy_X=True, n_jobs=None, positive=False)[源代码]#

普通最小平方线性回归。

线性回归用系数w =(w1,.,,wp)最小化数据集中观察到的目标与线性逼近预测的目标之间的残余平方和。

参数:
fit_intercept布尔,默认=True

是否计算此模型的拦截。如果设置为False,则计算中不会使用任何拦截(即数据预计居中)。

copy_X布尔,默认=True

如果为True,X将被复制;否则,可能会被覆盖。

n_jobsint,默认=无

用于计算的作业数。这只会在问题足够大的情况下提供加速,即首先 n_targets > 1 其次 X 稀疏或如果 positive 设置为 True . None 意思是1,除非在a中 joblib.parallel_backend 上下文 -1 意味着使用所有处理器。看到 Glossary 了解更多详细信息。

positive布尔,默认=假

如果设置为 True ,强制系数为正。此选项仅适用于密集阵列。

Added in version 0.24.

属性:
coef_形状数组(n_features,)或(n_targets,n_features)

线性回归问题的估计系数。如果在拟合过程中传递了多个目标(y 2D),则这是一个形状(n_targets,n_features)的2D数组,而如果只传递了一个目标,则这是一个长度为n_features的1D数组。

rank_int

矩阵秩 X .仅在以下情况下可用 X 是密集的。

singular_array of shape(min(X,y),)

奇异值 X .仅在以下情况下可用 X 是密集的。

intercept_浮动或形状数组(n_targets,)

线性模型中的独立项。设置为0.0,如果 fit_intercept = False .

n_features_in_int

期间看到的功能数量 fit .

Added in version 0.24.

feature_names_in_ :nd形状数组 (n_features_in_ ,)nd数组形状(

Names of features seen during fit. Defined only when X has feature names that are all strings.

Added in version 1.0.

参见

Ridge

岭回归通过l2正规化对系数的大小施加惩罚来解决普通最小平方的一些问题。

Lasso

Lasso是一个线性模型,通过l1正规化估计稀疏系数。

ElasticNet

Elastic-Net是一个线性回归模型,使用系数的l1和l2范数正则化进行训练。

注意到

从实现的角度来看,这只是包装为预测对象的普通最小平方(scipy.linalg.lstsq)或非负最小平方(scipy. optimal.nnls)。

示例

>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
>>> # y = 1 * x_0 + 2 * x_1 + 3
>>> y = np.dot(X, np.array([1, 2])) + 3
>>> reg = LinearRegression().fit(X, y)
>>> reg.score(X, y)
1.0
>>> reg.coef_
array([1., 2.])
>>> reg.intercept_
np.float64(3.0...)
>>> reg.predict(np.array([[3, 5]]))
array([16.])
fit(X, y, sample_weight=None)[源代码]#

拟合线性模型。

参数:
X形状(n_samples,n_features)的{类数组,稀疏矩阵}

训练数据。

y形状类似阵列(n_samples,)或(n_samples,n_targets)

目标值。如有必要,将被转换为X的d类型。

sample_weight形状类似数组(n_samples,),默认=无

每个样本的单独重量。

Added in version 0.17: 参数 sample_weight 支持线性回归。

返回:
self对象

装配估算。

get_metadata_routing()[源代码]#

获取此对象的元数据路由。

请检查 User Guide 关于路由机制如何工作。

返回:
routingMetadataRequest

A MetadataRequest 封装路由信息。

get_params(deep=True)[源代码]#

获取此估计器的参数。

参数:
deep布尔,默认=True

如果为True,将返回此估计量和包含的作为估计量的子对象的参数。

返回:
paramsdict

参数名称映射到其值。

predict(X)[源代码]#

Predict using the linear model.

参数:
X类阵列或稀疏矩阵,形状(n_samples,n_features)

样品

返回:
C数组,形状(n_samples,)

返回预测值。

score(X, y, sample_weight=None)[源代码]#

返回预测的决定系数。

决定系数 \(R^2\) 被定义为 \((1 - \frac{u}{v})\) ,在哪里 \(u\) 是残差平方和 ((y_true - y_pred)** 2).sum()\(v\) 是平方总和 ((y_true - y_true.mean()) ** 2).sum() .最好的可能分数是1.0,并且可以是负的(因为模型可以任意更差)。始终预测的期望值的恒定模型 y 如果不考虑输入功能,就会得到 \(R^2\) 评分0.0。

参数:
X形状类似阵列(n_samples,n_features)

Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.

y形状的类似阵列(n_samples,)或(n_samples,n_outputs)

真正的价值观 X .

sample_weight形状类似数组(n_samples,),默认=无

样本重量。

返回:
score浮子

\(R^2\)self.predict(X) w.r.t. y .

注意到

\(R^2\) 呼叫时使用的分数 score 在回归器上使用 multioutput='uniform_average' 从0.23版本开始,与默认值保持一致 r2_score .这影响了 score 所有多输出回归器的方法(除了 MultiOutputRegressor ).

set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') LinearRegression[源代码]#

请求元数据传递给 fit

请注意,此方法仅适用于以下情况 enable_metadata_routing=True (见 sklearn.set_config ).请参阅 User Guide 关于路由机制如何工作。

The options for each parameter are:

  • True :元数据被请求并传递给 fit 如果提供的话。如果未提供元数据,则会忽略请求。

  • False :未请求元数据,元估计器不会将其传递给 fit .

  • None :不请求元数据,如果用户提供元估计器,则元估计器将引发错误。

  • str :元数据应通过此给定别名而不是原始名称传递给元估计器。

默认 (sklearn.utils.metadata_routing.UNCHANGED )保留现有请求。这允许您更改某些参数的请求,而不是其他参数。

Added in version 1.3.

备注

只有当该估计器用作元估计器的子估计器时,该方法才相关,例如在 Pipeline .否则就没有效果了。

参数:
sample_weight字符串、真、假或无, 默认=sklearn.utils. metalics_Routing.UNChanged

元数据路由 sample_weight 参数 fit .

返回:
self对象

更新的对象。

set_params(**params)[源代码]#

设置此估计器的参数。

该方法适用于简单估计器以及嵌套对象(例如 Pipeline ).后者具有以下形式的参数 <component>__<parameter> 以便可以更新嵌套对象的每个组件。

参数:
**paramsdict

估计参数。

返回:
self估计器实例

估计实例。

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') LinearRegression[源代码]#

请求元数据传递给 score

请注意,此方法仅适用于以下情况 enable_metadata_routing=True (见 sklearn.set_config ).请参阅 User Guide 关于路由机制如何工作。

The options for each parameter are:

  • True :元数据被请求并传递给 score 如果提供的话。如果未提供元数据,则会忽略请求。

  • False :未请求元数据,元估计器不会将其传递给 score .

  • None :不请求元数据,如果用户提供元估计器,则元估计器将引发错误。

  • str :元数据应通过此给定别名而不是原始名称传递给元估计器。

默认 (sklearn.utils.metadata_routing.UNCHANGED )保留现有请求。这允许您更改某些参数的请求,而不是其他参数。

Added in version 1.3.

备注

只有当该估计器用作元估计器的子估计器时,该方法才相关,例如在 Pipeline .否则就没有效果了。

参数:
sample_weight字符串、真、假或无, 默认=sklearn.utils. metalics_Routing.UNChanged

元数据路由 sample_weight 参数 score .

返回:
self对象

更新的对象。