ExpSineSquared#
- class sklearn.gaussian_process.kernels.ExpSineSquared(length_scale=1.0, periodicity=1.0, length_scale_bounds=(1e-05, 100000.0), periodicity_bounds=(1e-05, 100000.0))[源代码]#
Exp-Sine-Squared内核(又名周期内核)。
ExpSineSquared内核允许对重复的函数建模。它由长度比例参数参数化 \(l>0\) 和周期性参数 \(p>0\) .只有各向同性变体, \(l\) 是目前支持的纯量。内核由下式给出:
\[k(x_i, x_j) = \text{exp}\left(- \frac{ 2\sin^2(\pi d(x_i, x_j)/p) }{ l^ 2} \right)\]哪里 \(l\) 是内核的长度尺度, \(p\) 内核的周期性和 \(d(\cdot,\cdot)\) 是欧几里得距离。
阅读更多的 User Guide .
Added in version 0.18.
- 参数:
- length_scalefloat > 0,默认=1.0
内核的长度规模。
- periodicityfloat > 0,默认=1.0
内核的周期性。
- length_scale_bounds浮点数对>= 0或“固定”,默认=(1 e-5,1 e5)
“long_scale”的下限和上限。如果设置为“fixed”,则在超参数调优期间无法更改“long_scale”。
- periodicity_bounds浮点数对>= 0或“固定”,默认=(1 e-5,1 e5)
“可持续性”的上下限。如果设置为“固定”,则在超参数调整期间无法更改“周期性”。
示例
>>> from sklearn.datasets import make_friedman2 >>> from sklearn.gaussian_process import GaussianProcessRegressor >>> from sklearn.gaussian_process.kernels import ExpSineSquared >>> X, y = make_friedman2(n_samples=50, noise=0, random_state=0) >>> kernel = ExpSineSquared(length_scale=1, periodicity=1) >>> gpr = GaussianProcessRegressor(kernel=kernel, alpha=5, ... random_state=0).fit(X, y) >>> gpr.score(X, y) 0.0144... >>> gpr.predict(X[:2,:], return_std=True) (array([425.6..., 457.5...]), array([0.3894..., 0.3467...]))
- __call__(X, Y=None, eval_gradient=False)[源代码]#
返回内核k(X,Y)以及可选的其梯度。
- 参数:
- X形状的nd数组(n_samples_X,n_features)
返回的内核k(X,Y)的左参数
- Y形状的nd数组(n_samples_Y,n_features),默认=无
返回的内核k(X,Y)的正确参数。如果无,则改为计算k(X,X)。
- eval_gradient布尔,默认=假
确定是否计算相对于内核超参数日志的梯度。仅当Y为无时支持。
- 返回:
- K形状的nd数组(n_samples_X,n_samples_Y)
核k(X,Y)
- K_gradientnd形状数组(n_samples_X,n_samples_X,n_dims), 任择
核k(X,X)相对于核超参数log的梯度。只有当
eval_gradient
是真的
- property bounds#
返回theta的log转换边界。
- 返回:
- bounds形状的nd数组(n_dims,2)
核超参数theta的log转换界限
- diag(X)[源代码]#
Returns the diagonal of the kernel k(X, X).
该方法的结果与mp.diag(self(X))相同;但是,由于仅评估对角线,因此可以更有效地评估它。
- 参数:
- X形状的nd数组(n_samples_X,n_features)
返回的内核k(X,Y)的左参数
- 返回:
- K_diag形状的nd数组(n_samples_X,)
核k(X,X)的对角线
- get_params(deep=True)[源代码]#
获取此内核的参数。
- 参数:
- deep布尔,默认=True
如果为True,将返回此估计量和包含的作为估计量的子对象的参数。
- 返回:
- paramsdict
参数名称映射到其值。
- property hyperparameter_length_scale#
返回长度比例
- property hyperparameters#
返回所有超参数规范的列表。
- property n_dims#
返回内核非固定超参数的数量。
- property requires_vector_input#
返回内核是在固定长度特征载体上还是在通用对象上定义的。默认为True以实现向后兼容性。
- set_params(**params)[源代码]#
Set the parameters of this kernel.
该方法适用于简单内核和嵌套内核。后者具有以下形式的参数
<component>__<parameter>
以便可以更新嵌套对象的每个组件。- 返回:
- 自我
- property theta#
返回(拉平、日志转换)非固定超参数。
注意,theta通常是内核超参数的对数变换值,因为搜索空间的这种表示更适合超参数搜索,因为像长度尺度这样的超参数自然存在于对数尺度上。
- 返回:
- theta形状的nd数组(n_dims,)
内核的非固定的、经过log转换的超参数