shrunk_covariance#

sklearn.covariance.shrunk_covariance(emp_cov, shrinkage=0.1)[源代码]#

计算对角线上缩小的协方差矩阵。

阅读更多的 User Guide .

参数:
emp_cov阵列状的形状(.,n_特征,n_特征)

协方差矩阵要缩小,至少是2D ndray。

shrinkagefloat,默认=0.1

用于计算缩小估计值的凸组合中的系数。范围 [0, 1] .

返回:
shrunk_covnd数组形状(.,n_特征,n_特征)

缩小协方差矩阵。

注意到

正规化(缩小)协方差由下式给出::

(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)

哪里 mu = trace(cov) / n_features .

示例

>>> import numpy as np
>>> from sklearn.datasets import make_gaussian_quantiles
>>> from sklearn.covariance import empirical_covariance, shrunk_covariance
>>> real_cov = np.array([[.8, .3], [.3, .4]])
>>> rng = np.random.RandomState(0)
>>> X = rng.multivariate_normal(mean=[0, 0], cov=real_cov, size=500)
>>> shrunk_covariance(empirical_covariance(X))
array([[0.73..., 0.25...],
       [0.25..., 0.41...]])