PredefinedSplit#

class sklearn.model_selection.PredefinedSplit(test_fold)[源代码]#

预定义的分割交叉验证程序。

提供训练/测试索引,以使用用户指定的预定义方案将数据拆分为训练/测试集 test_fold 参数.

阅读更多的 User Guide .

Added in version 0.16.

参数:
test_fold形状类似阵列(n_samples,)

入境 test_fold[i] 代表该样本的测试集的索引 i 属于。可以排除样本 i 来自任何测试集(即包括样本 i 在每个训练集中)通过设置 test_fold[i] 等于-1。

示例

>>> import numpy as np
>>> from sklearn.model_selection import PredefinedSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> test_fold = [0, 1, -1, 1]
>>> ps = PredefinedSplit(test_fold)
>>> ps.get_n_splits()
2
>>> print(ps)
PredefinedSplit(test_fold=array([ 0,  1, -1,  1]))
>>> for i, (train_index, test_index) in enumerate(ps.split()):
...     print(f"Fold {i}:")
...     print(f"  Train: index={train_index}")
...     print(f"  Test:  index={test_index}")
Fold 0:
  Train: index=[1 2 3]
  Test:  index=[0]
Fold 1:
  Train: index=[0 2]
  Test:  index=[1 3]
get_metadata_routing()[源代码]#

获取此对象的元数据路由。

请检查 User Guide 关于路由机制如何工作。

返回:
routingMetadataRequest

A MetadataRequest 封装路由信息。

get_n_splits(X=None, y=None, groups=None)[源代码]#

返回交叉验证器中分裂迭代的数量。

参数:
X对象

总是被忽略,存在是为了兼容性。

y对象

总是被忽略,存在是为了兼容性。

groups对象

总是被忽略,存在是为了兼容性。

返回:
n_splitsint

返回交叉验证器中分裂迭代的数量。

split(X=None, y=None, groups=None)[源代码]#

生成索引将数据拆分为训练集和测试集。

参数:
X对象

总是被忽略,存在是为了兼容性。

y对象

总是被忽略,存在是为了兼容性。

groups对象

总是被忽略,存在是为了兼容性。

收益率:
trainndarray

训练为该分裂设置了指数。

testndarray

测试为该分裂设置了指数。