1. 结巴分词

NLP(自然语言)领域现在可谓是群雄纷争,各种开源组件层出不穷,其中一支不可忽视的力量便是jieba分词,号称要做最好的 Python 中文分词组件。

“最好的”这三个字可不是空穴来风,jieba在开源社区的受欢迎程度非常之高。

  • 支持繁体分词

  • 支持自定义词典

  • MIT 授权协议

jieba项目目前的github star数已经达到24k,其他热门分词组件像HanLP star数20k、ansj_seg star数5.6k、pkuseg-python star数5k。 可见jieba已经稳居中文分词领域c位。

jieba的主要功能是做中文分词,可以进行简单分词、并行分词、命令行分词,当然它的功能不限于此, 目前还支持关键词提取、词性标注、词位置查询等。

更让人愉悦的是jieba虽然立足于python,但同样支持其他语言和平台, 诸如:C++、Go、R、Rust、Node.js、PHP、 iOS、Android等。 所以jieba能满足各类开发者的需求。

1.1. 安装说明

代码对 Python 2/3 均兼容 。

  • 全自动安装:easy_install jieba 或者 pip install jieba / pip3 install jieba

  • 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install

  • 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录,通过 import jieba 来引用

  • 如果需要使用paddle模式下的分词和词性标注功能,请先安装 paddlepaddle-tiny , pip install paddlepaddle-tiny==1.6.1

安装:

pip3 install common dual tight data prox paddle
pip3 install jieba

以上为原资料。

2024年更新:

安装使用:

pip3 install paddlepaddle jieba

这个貌似是用百度算力, tiny 只是应用模式?

Debain / Ubuntu 中安装,注意无法使用 paddlepaddle

sudo apt install -y python3-jieba

1.2. 算法

  • 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)

  • 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合

  • 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法

有向无环图 (DAG)

图 1.3 有向无环图 (DAG)

有向无环图 (DAG)

1.3. 主要功能

  1. 分词

  2. **添加自定义词典

开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率。

用法: jieba.load_userdict(file_name)

其中 file_name 为文件类对象或自定义词典的路径。

词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。 file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。

词频省略时使用自动计算的能保证分出该词的词频。

  1. 关键词提取

  2. 词性标注

  • jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的 jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。

  • 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。

  • 除了jieba默认分词模式,提供paddle模式下的词性标注功能。paddle模式采用延迟加载方式,通过enable_paddle()安装paddlepaddle-tiny,并且import相关代码;

  1. 并行分词

  • 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升

  • 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows

  • 用法:

    • jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数

    • jieba.disable_parallel() # 关闭并行分词模式

  1. Tokenize:返回词语在原文的起止位置

  2. ChineseAnalyzer for Whoosh 搜索引擎

  3. 命令行分词