ArcSine1D

class astropy.modeling.functional_models.ArcSine1D(*args, meta=None, name=None, **kwargs)[源代码]

基类:astropy.modeling.functional_models._InverseTrigonometric1D

一维ArcSine模型仅返回-pi/2和pi/2之间的值。

参数
amplitude浮动

相应正弦信号的振荡幅度

frequency浮动

相应正弦信号的振荡频率

phase浮动

相应正弦信号的振荡相位

其他参数
fixed口述,可选

字典 {{parameter_name: boolean}} 在拟合过程中不能改变的参数。True表示参数保持不变。或者 fixed 可以使用参数的属性。

tied可选的

字典 {{parameter_name: callable}} 链接到其他参数的参数。字典值是提供链接关系的可调用项。或者 tied 可以使用参数的属性。

bounds可选的

字典 {{parameter_name: value}} 参数的上下界。键是参数名。值是一个长度为2的列表或元组,为参数提供所需的范围。或者 minmax 可以使用参数的属性。

eqcons可选列表

长度函数列表 n 这样的话 eqcons[j](x0,*args) == 0.0 在一个成功优化的问题中。

ineqcons可选列表

长度函数列表 n 这样的话 ieqcons[j](x0,*args) >= 0.0 是一个成功优化的问题。

笔记

模型公式:

\[F(X)=((arcsin(x/A)/2pi)-p)/f\]

此模型使用的arcsin函数将仅接受中的输入 [-A, A] ;否则抛出运行时警告,结果为NaN。为了避免这种情况,已经正确地设置了burding_box以适应这种情况;因此,建议始终使用 with_bounding_box=True 选项。

实例

import numpy as np
import matplotlib.pyplot as plt

from astropy.modeling.models import ArcSine1D

plt.figure()
s1 = ArcSine1D(amplitude=1, frequency=.25)
r=np.arange(-1, 1, .01)

for amplitude in range(1,4):
     s1.amplitude = amplitude
     plt.plot(r, s1(r), color=str(0.25 * amplitude), lw=2)

plt.axis([-1, 1, -np.pi/2, np.pi/2])
plt.show()

(png _, svgpdf )

../_images/astropy-modeling-functional_models-ArcSine1D-1.png

方法总结

evaluate (X、幅度、频率、相位)

一维反正弦模型函数

fit_deriv (X、幅度、频率、相位)

一维反正弦模型导数

方法文件

static evaluate(x, amplitude, frequency, phase)[源代码]

一维反正弦模型函数

static fit_deriv(x, amplitude, frequency, phase)[源代码]

一维反正弦模型导数