一维量子谐振子#
- sympy.physics.qho_1d.E_n(n, omega)[源代码]#
Returns the Energy of the One-dimensional harmonic oscillator.
- 参数:
n :
The "nodal" quantum number.
omega :
The harmonic oscillator angular frequency.
笔记
返回值的单位与hw的单位相匹配,因为能量计算如下:
E_n=hbar 欧米茄 (n+1/2)
实例
>>> from sympy.physics.qho_1d import E_n >>> from sympy.abc import x, omega >>> E_n(x, omega) hbar*omega*(x + 1/2)
- sympy.physics.qho_1d.coherent_state(n, alpha)[源代码]#
返回一维谐振子相干态的<n | alpha>。看到了吗https://en.wikipedia.org/wiki/concertive_状态
- 参数:
n :
The "nodal" quantum number.
alpha :
The eigen value of annihilation operator.
- sympy.physics.qho_1d.psi_n(n, x, m, omega)[源代码]#
返回一维谐振子的波函数psi{n}。
- 参数:
n :
the "nodal" quantum number. Corresponds to the number of nodes in the wavefunction.
n >= 0
x :
x coordinate.
m :
粒子的质量。
omega :
Angular frequency of the oscillator.
实例
>>> from sympy.physics.qho_1d import psi_n >>> from sympy.abc import m, x, omega >>> psi_n(0, x, m, omega) (m*omega)**(1/4)*exp(-m*omega*x**2/(2*hbar))/(hbar**(1/4)*pi**(1/4))