氢波函数#
- sympy.physics.hydrogen.E_nl(n, Z=1)[源代码]#
返回以Hartree原子单位表示的状态(n,l)的能量。
The energy does not depend on "l".
- 参数:
n :整数
Principal Quantum Number which is an integer with possible values as 1, 2, 3, 4,...
Z :
Atomic number (1 for Hydrogen, 2 for Helium, ...)
实例
>>> from sympy.physics.hydrogen import E_nl >>> from sympy.abc import n, Z >>> E_nl(n, Z) -Z**2/(2*n**2) >>> E_nl(1) -1/2 >>> E_nl(2) -1/8 >>> E_nl(3) -1/18 >>> E_nl(3, 47) -2209/18
- sympy.physics.hydrogen.E_nl_dirac(n, l, spin_up=True, Z=1, c=137.035999037000)[源代码]#
返回状态(n,l,自旋)的相对论能量,以Hartree原子单位表示。
能量是从狄拉克方程计算出来的。其余的质量能是 not 包括。
- 参数:
n :整数
Principal Quantum Number which is an integer with possible values as 1, 2, 3, 4,...
l : integer
l
is the Angular Momentum Quantum Number with values ranging from 0 ton-1
.spin_up :
如果电子自旋向上(默认),则为真,否则为向下
Z :
Atomic number (1 for Hydrogen, 2 for Helium, ...)
c :
Speed of light in atomic units. Default value is 137.035999037, taken from https://arxiv.org/abs/1012.3627
实例
>>> from sympy.physics.hydrogen import E_nl_dirac >>> E_nl_dirac(1, 0) -0.500006656595360
>>> E_nl_dirac(2, 0) -0.125002080189006 >>> E_nl_dirac(2, 1) -0.125000416028342 >>> E_nl_dirac(2, 1, False) -0.125002080189006
>>> E_nl_dirac(3, 0) -0.0555562951740285 >>> E_nl_dirac(3, 1) -0.0555558020932949 >>> E_nl_dirac(3, 1, False) -0.0555562951740285 >>> E_nl_dirac(3, 2) -0.0555556377366884 >>> E_nl_dirac(3, 2, False) -0.0555558020932949
- sympy.physics.hydrogen.Psi_nlm(n, l, m, r, phi, theta, Z=1)[源代码]#
返回氢波函数psi{nlm}。它是径向波函数R{nl}和球谐函数Y{l}^{m}的乘积。
- 参数:
n :整数
Principal Quantum Number which is an integer with possible values as 1, 2, 3, 4,...
l : integer
l
is the Angular Momentum Quantum Number with values ranging from 0 ton-1
.m :整数
m
is the Magnetic Quantum Number with values ranging from-l
tol
.r :
径向坐标
phi :
方位角
theta :
极角
Z :
原子序数(1代表氢,2代表氦…)
Everything is in Hartree atomic units.
实例
>>> from sympy.physics.hydrogen import Psi_nlm >>> from sympy import Symbol >>> r=Symbol("r", positive=True) >>> phi=Symbol("phi", real=True) >>> theta=Symbol("theta", real=True) >>> Z=Symbol("Z", positive=True, integer=True, nonzero=True) >>> Psi_nlm(1,0,0,r,phi,theta,Z) Z**(3/2)*exp(-Z*r)/sqrt(pi) >>> Psi_nlm(2,1,1,r,phi,theta,Z) -Z**(5/2)*r*exp(I*phi)*exp(-Z*r/2)*sin(theta)/(8*sqrt(pi))
将氢波函数psi{nlm}的绝对平方积分到整个空间的导联1。
氢波函数的标准化为:
>>> from sympy import integrate, conjugate, pi, oo, sin >>> wf=Psi_nlm(2,1,1,r,phi,theta,Z) >>> abs_sqrd=wf*conjugate(wf) >>> jacobi=r**2*sin(theta) >>> integrate(abs_sqrd*jacobi, (r,0,oo), (phi,0,2*pi), (theta,0,pi)) 1
- sympy.physics.hydrogen.R_nl(n, l, r, Z=1)[源代码]#
返回氢径向波函数R{nl}。
- 参数:
n :整数
Principal Quantum Number which is an integer with possible values as 1, 2, 3, 4,...
l : integer
l
is the Angular Momentum Quantum Number with values ranging from 0 ton-1
.r :
Radial coordinate.
Z :
Atomic number (1 for Hydrogen, 2 for Helium, ...)
Everything is in Hartree atomic units.
实例
>>> from sympy.physics.hydrogen import R_nl >>> from sympy.abc import r, Z >>> R_nl(1, 0, r, Z) 2*sqrt(Z**3)*exp(-Z*r) >>> R_nl(2, 0, r, Z) sqrt(2)*(-Z*r + 2)*sqrt(Z**3)*exp(-Z*r/2)/4 >>> R_nl(2, 1, r, Z) sqrt(6)*Z*r*sqrt(Z**3)*exp(-Z*r/2)/12
对于氢原子,可以使用默认值Z=1:
>>> R_nl(1, 0, r) 2*exp(-r) >>> R_nl(2, 0, r) sqrt(2)*(2 - r)*exp(-r/2)/4 >>> R_nl(3, 0, r) 2*sqrt(3)*(2*r**2/9 - 2*r + 3)*exp(-r/3)/27
对于银原子,可以使用Z=47:
>>> R_nl(1, 0, r, Z=47) 94*sqrt(47)*exp(-47*r) >>> R_nl(2, 0, r, Z=47) 47*sqrt(94)*(2 - 47*r)*exp(-47*r/2)/4 >>> R_nl(3, 0, r, Z=47) 94*sqrt(141)*(4418*r**2/9 - 94*r + 3)*exp(-47*r/3)/27
径向波函数的归一化为:
>>> from sympy import integrate, oo >>> integrate(R_nl(1, 0, r)**2 * r**2, (r, 0, oo)) 1 >>> integrate(R_nl(2, 0, r)**2 * r**2, (r, 0, oo)) 1 >>> integrate(R_nl(2, 1, r)**2 * r**2, (r, 0, oo)) 1
它保留任何原子数:
>>> integrate(R_nl(1, 0, r, Z=2)**2 * r**2, (r, 0, oo)) 1 >>> integrate(R_nl(2, 0, r, Z=3)**2 * r**2, (r, 0, oo)) 1 >>> integrate(R_nl(2, 1, r, Z=4)**2 * r**2, (r, 0, oo)) 1