程序洞穴--二进制空间划分#

procedural_caves_bsp.py#
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 | """ This example procedurally develops a random cave based on Binary Space Partitioning (BSP) For more information, see: https://roguebasin.roguelikedevelopment.org/index.php?title=Basic_BSP_Dungeon_generation https://github.com/DanaL/RLDungeonGenerator If Python and Arcade are installed, this example can be run from the command line with: python -m arcade.examples.procedural_caves_bsp """ import random import arcade import timeit import math import os # Sprite scaling. Make this larger, like 0.5 to zoom in and add # 'mystery' to what you can see. Make it smaller, like 0.1 to see # more of the map. WALL_SPRITE_SCALING = 0.5 PLAYER_SPRITE_SCALING = 0.25 WALL_SPRITE_SIZE = int(128 * WALL_SPRITE_SCALING) # How big the grid is GRID_WIDTH = 100 GRID_HEIGHT = 100 AREA_WIDTH = GRID_WIDTH * WALL_SPRITE_SIZE AREA_HEIGHT = GRID_HEIGHT * WALL_SPRITE_SIZE # How fast the player moves MOVEMENT_SPEED = 5 # How close the player can get to the edge before we scroll. VIEWPORT_MARGIN = 300 # How big the window is WINDOW_WIDTH = 800 WINDOW_HEIGHT = 600 WINDOW_TITLE = "Procedural Caves BSP Example" MERGE_SPRITES = False class Room: """ A room """ def __init__(self, r, c, h, w): self.row = r self.col = c self.height = h self.width = w class RLDungeonGenerator: """ Generate the dungeon """ def __init__(self, w, h): """ Create the board """ self.MAX = 15 # Cutoff for when we want to stop dividing sections self.width = w self.height = h self.leaves = [] self.dungeon = [] self.rooms = [] for h in range(self.height): row = [] for w in range(self.width): row.append('#') self.dungeon.append(row) def random_split(self, min_row, min_col, max_row, max_col): # We want to keep splitting until the sections get down to the threshold seg_height = max_row - min_row seg_width = max_col - min_col if seg_height < self.MAX and seg_width < self.MAX: self.leaves.append((min_row, min_col, max_row, max_col)) elif seg_height < self.MAX <= seg_width: self.split_on_vertical(min_row, min_col, max_row, max_col) elif seg_height >= self.MAX > seg_width: self.split_on_horizontal(min_row, min_col, max_row, max_col) else: if random.random() < 0.5: self.split_on_horizontal(min_row, min_col, max_row, max_col) else: self.split_on_vertical(min_row, min_col, max_row, max_col) def split_on_horizontal(self, min_row, min_col, max_row, max_col): split = (min_row + max_row) // 2 + random.choice((-2, -1, 0, 1, 2)) self.random_split(min_row, min_col, split, max_col) self.random_split(split + 1, min_col, max_row, max_col) def split_on_vertical(self, min_row, min_col, max_row, max_col): split = (min_col + max_col) // 2 + random.choice((-2, -1, 0, 1, 2)) self.random_split(min_row, min_col, max_row, split) self.random_split(min_row, split + 1, max_row, max_col) def carve_rooms(self): for leaf in self.leaves: # We don't want to fill in every possible room or the # dungeon looks too uniform if random.random() > 0.80: continue section_width = leaf[3] - leaf[1] section_height = leaf[2] - leaf[0] # The actual room's height and width will be 60-100% of the # available section. room_width = round(random.randrange(60, 100) / 100 * section_width) room_height = round(random.randrange(60, 100) / 100 * section_height) # If the room doesn't occupy the entire section we are carving it from, # 'jiggle' it a bit in the square if section_height > room_height: room_start_row = leaf[0] + random.randrange(section_height - room_height) else: room_start_row = leaf[0] if section_width > room_width: room_start_col = leaf[1] + random.randrange(section_width - room_width) else: room_start_col = leaf[1] self.rooms.append(Room(room_start_row, room_start_col, room_height, room_width)) for r in range(room_start_row, room_start_row + room_height): for c in range(room_start_col, room_start_col + room_width): self.dungeon[r][c] = '.' @staticmethod def are_rooms_adjacent(room1, room2): """ See if two rooms are next to each other. """ adj_rows = [] adj_cols = [] for r in range(room1.row, room1.row + room1.height): if room2.row <= r < room2.row + room2.height: adj_rows.append(r) for c in range(room1.col, room1.col + room1.width): if room2.col <= c < room2.col + room2.width: adj_cols.append(c) return adj_rows, adj_cols @staticmethod def distance_between_rooms(room1, room2): """ Get the distance between two rooms """ centre1 = (room1.row + room1.height // 2, room1.col + room1.width // 2) centre2 = (room2.row + room2.height // 2, room2.col + room2.width // 2) return math.sqrt((centre1[0] - centre2[0]) ** 2 + (centre1[1] - centre2[1]) ** 2) def carve_corridor_between_rooms(self, room1, room2): """ Make a corridor between rooms """ if room2[2] == 'rows': row = random.choice(room2[1]) # Figure out which room is to the left of the other if room1.col + room1.width < room2[0].col: start_col = room1.col + room1.width end_col = room2[0].col else: start_col = room2[0].col + room2[0].width end_col = room1.col for c in range(start_col, end_col): self.dungeon[row][c] = '.' if end_col - start_col >= 4: self.dungeon[row][start_col] = '+' self.dungeon[row][end_col - 1] = '+' elif start_col == end_col - 1: self.dungeon[row][start_col] = '+' else: col = random.choice(room2[1]) # Figure out which room is above the other if room1.row + room1.height < room2[0].row: start_row = room1.row + room1.height end_row = room2[0].row else: start_row = room2[0].row + room2[0].height end_row = room1.row for r in range(start_row, end_row): self.dungeon[r][col] = '.' if end_row - start_row >= 4: self.dungeon[start_row][col] = '+' self.dungeon[end_row - 1][col] = '+' elif start_row == end_row - 1: self.dungeon[start_row][col] = '+' def find_closest_unconnect_groups(self, groups, room_dict): """ Find two nearby rooms that are in difference groups, draw a corridor between them and merge the groups """ shortest_distance = 99999 start = None start_group = None nearest = None for group in groups: for room in group: key = (room.row, room.col) for other in room_dict[key]: if not other[0] in group and other[3] < shortest_distance: shortest_distance = other[3] start = room nearest = other start_group = group self.carve_corridor_between_rooms(start, nearest) # Merge the groups other_group = None for group in groups: if nearest[0] in group: other_group = group break start_group += other_group groups.remove(other_group) def connect_rooms(self): """ Build a dictionary containing an entry for each room. Each bucket will hold a list of the adjacent rooms, weather they are adjacent along rows or columns and the distance between them. Also build the initial groups (which start of as a list of individual rooms) """ groups = [] room_dict = {} for room in self.rooms: key = (room.row, room.col) room_dict[key] = [] for other in self.rooms: other_key = (other.row, other.col) if key == other_key: continue adj = self.are_rooms_adjacent(room, other) if len(adj[0]) > 0: room_dict[key].append((other, adj[0], 'rows', self.distance_between_rooms(room, other))) elif len(adj[1]) > 0: room_dict[key].append((other, adj[1], 'cols', self.distance_between_rooms(room, other))) groups.append([room]) while len(groups) > 1: self.find_closest_unconnect_groups(groups, room_dict) def generate_map(self): """ Make the map """ self.random_split(1, 1, self.height - 1, self.width - 1) self.carve_rooms() self.connect_rooms() class MyGame(arcade.Window): """ Main application class. """ def __init__(self, width, height, title): super().__init__(width, height, title) # Set the working directory (where we expect to find files) to the same # directory this .py file is in. You can leave this out of your own # code, but it is needed to easily run the examples using "python -m" # as mentioned at the top of this program. file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) self.grid = None self.wall_list = None self.player_list = None self.player_sprite = None self.view_bottom = 0 self.view_left = 0 self.physics_engine = None self.processing_time = 0 self.draw_time = 0 arcade.set_background_color(arcade.color.BLACK) def setup(self): """ Set up the game """ self.wall_list = arcade.SpriteList(use_spatial_hash=True) self.player_list = arcade.SpriteList() # Create cave system using a 2D grid dg = RLDungeonGenerator(GRID_WIDTH, GRID_HEIGHT) dg.generate_map() # Create sprites based on 2D grid if not MERGE_SPRITES: # This is the simple-to-understand method. Each grid location # is a sprite. for row in range(dg.height): for column in range(dg.width): value = dg.dungeon[row][column] if value == '#': wall = arcade.Sprite(":resources:images/tiles/grassCenter.png", WALL_SPRITE_SCALING) wall.center_x = column * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 wall.center_y = row * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 self.wall_list.append(wall) else: # This uses new Arcade 1.3.1 features, that allow me to create a # larger sprite with a repeating texture. So if there are multiple # cells in a row with a wall, we merge them into one sprite, with a # repeating texture for each cell. This reduces our sprite count. for row in range(dg.height): column = 0 while column < dg.width: while column < dg.width and dg.dungeon[row][column] != '#': column += 1 start_column = column while column < dg.width and dg.dungeon[row][column] == '#': column += 1 end_column = column - 1 column_count = end_column - start_column + 1 column_mid = (start_column + end_column) / 2 wall = arcade.Sprite(":resources:images/tiles/grassCenter.png", WALL_SPRITE_SCALING, repeat_count_x=column_count) wall.center_x = column_mid * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 wall.center_y = row * WALL_SPRITE_SIZE + WALL_SPRITE_SIZE / 2 wall.width = WALL_SPRITE_SIZE * column_count self.wall_list.append(wall) # Set up the player self.player_sprite = arcade.Sprite(":resources:images/animated_characters/female_person/" "femalePerson_idle.png", PLAYER_SPRITE_SCALING) self.player_list.append(self.player_sprite) # Randomly place the player. If we are in a wall, repeat until we aren't. placed = False while not placed: # Randomly position self.player_sprite.center_x = random.randrange(AREA_WIDTH) self.player_sprite.center_y = random.randrange(AREA_HEIGHT) # Are we in a wall? walls_hit = arcade.check_for_collision_with_list(self.player_sprite, self.wall_list) if len(walls_hit) == 0: # Not in a wall! Success! placed = True self.physics_engine = arcade.PhysicsEngineSimple(self.player_sprite, self.wall_list) def on_draw(self): """ Render the screen. """ # Start timing how long this takes draw_start_time = timeit.default_timer() # This command should happen before we start drawing. It will clear # the screen to the background color, and erase what we drew last frame. self.clear() # Draw the sprites self.wall_list.draw() self.player_list.draw() # Draw info on the screen sprite_count = len(self.wall_list) output = f"Sprite Count: {sprite_count}" arcade.draw_text(output, self.view_left + 20, WINDOW_HEIGHT - 20 + self.view_bottom, arcade.color.WHITE, 16) output = f"Drawing time: {self.draw_time:.3f}" arcade.draw_text(output, self.view_left + 20, WINDOW_HEIGHT - 40 + self.view_bottom, arcade.color.WHITE, 16) output = f"Processing time: {self.processing_time:.3f}" arcade.draw_text(output, self.view_left + 20, WINDOW_HEIGHT - 60 + self.view_bottom, arcade.color.WHITE, 16) self.draw_time = timeit.default_timer() - draw_start_time def on_key_press(self, key, modifiers): """Called whenever a key is pressed. """ if key == arcade.key.UP: self.player_sprite.change_y = MOVEMENT_SPEED elif key == arcade.key.DOWN: self.player_sprite.change_y = -MOVEMENT_SPEED elif key == arcade.key.LEFT: self.player_sprite.change_x = -MOVEMENT_SPEED elif key == arcade.key.RIGHT: self.player_sprite.change_x = MOVEMENT_SPEED def on_key_release(self, key, modifiers): """Called when the user releases a key. """ if key == arcade.key.UP or key == arcade.key.DOWN: self.player_sprite.change_y = 0 elif key == arcade.key.LEFT or key == arcade.key.RIGHT: self.player_sprite.change_x = 0 def on_update(self, delta_time): """ Movement and game logic """ start_time = timeit.default_timer() # Move the player self.physics_engine.update() # --- Manage Scrolling --- # Track if we need to change the viewport changed = False # Scroll left left_bndry = self.view_left + VIEWPORT_MARGIN if self.player_sprite.left < left_bndry: self.view_left -= left_bndry - self.player_sprite.left changed = True # Scroll right right_bndry = self.view_left + WINDOW_WIDTH - VIEWPORT_MARGIN if self.player_sprite.right > right_bndry: self.view_left += self.player_sprite.right - right_bndry changed = True # Scroll up top_bndry = self.view_bottom + WINDOW_HEIGHT - VIEWPORT_MARGIN if self.player_sprite.top > top_bndry: self.view_bottom += self.player_sprite.top - top_bndry changed = True # Scroll down bottom_bndry = self.view_bottom + VIEWPORT_MARGIN if self.player_sprite.bottom < bottom_bndry: self.view_bottom -= bottom_bndry - self.player_sprite.bottom changed = True if changed: arcade.set_viewport(self.view_left, WINDOW_WIDTH + self.view_left, self.view_bottom, WINDOW_HEIGHT + self.view_bottom) # Save the time it took to do this. self.processing_time = timeit.default_timer() - start_time def main(): """ Main function, start up window and run """ game = MyGame(WINDOW_WIDTH, WINDOW_HEIGHT, WINDOW_TITLE) game.setup() arcade.run() if __name__ == "__main__": main() |