几何分布¶
带参数的几何随机变量 \(p\in\left(0,1\right)\) 可以定义为获得成功所需的试验次数,其中每个试验的成功概率为 \(p\) 。因此,
\BEGIN{eqnarray *}} p\left(k;p\right) & = & \left(1-p\right)^{{k-1}}p\quad k\geq1\\ F\left(x;p\right) & = & 1-\left(1-p\right)^{{\left\lfloor x\right\rfloor }}\quad x\geq1\\ G\left(q;p\right) & = & \left\lceil \frac{{\log\left(1-q\right)}}{{\log\left(1-p\right)}}\right\rceil \\ \mu & = & \frac{{1}}{{p}}\\ \mu_{{2}} & = & \frac{{1-p}}{{p^{{2}}}}\\ \gamma_{{1}} & = & \frac{{2-p}}{{\sqrt{{1-p}}}}\\ \gamma_{{2}} & = & \frac{{p^{{2}}-6p+6}}{{1-p}}.\end{{eqnarray* }
\BEGIN{eqnarray *}} M\left(t\right) & = & \frac{{p}}{{e^{{-t}}-\left(1-p\right)}}\end{{eqnarray* }
实施: scipy.stats.geom