Zipfian分布

随机变量具有带参数的Zipfian分布 \(s \ge 0\)\(N \in \{{1, 2, 3, \dots\}}\) 如果它的概率质量函数由下式给出

\BEGIN{eqnarray *}} p\left(k; s, N \right) & = & \frac{{1}}{{H_{{N, s}}k^{{s}}}}\quad k \in \{{1, 2, \dots, n-1, n\}} \end{{eqnarray* }

哪里

\[H_{N,s}=\sum_{n=1}^{N}\frac{1}{n^{s}}\]

是不是 \(N\) :sup:th‘阶广义调和数 :math:`s 。此发行版的其他功能包括

\BEGIN{eqnarray*} F\Left(x;s,N\Right)&=&\frac{H_{k,s}}{H_{N,s}},\\ \m&=&\frac{H_{N,s-1}}{H_{N,s}},\\ \MU_{2}&=&\frac{H_{N,s-2}}{H_{N,s}}-\frac{H^2_{N,s-1}}{H^2_{N,s}},\\ \Gamma_1&=&\frac{\frac{H_{N,s-3}}{H_{N,s}}-3\frac{H_{N,s-1}H_{N,s-2}}{H_{N,s}^2}+2\frac{H_{N,s-1}^3}{H_{N,s}^3}{\frac{H_{N,s-2}H_{s-1}^2}{H_{N,s}^2}\右)^{\frac{3}{2},\mbox{和}\\ \Gamma_2&=&\frac{H_{N,s}^3 H_{N,s-4}-4 H_{N,s}^2 H_{N,s-1}H_{N,s-3}+6 H_{N,s}H_{N,s-1}^2 H_{N,s-2}-3 H_{N,s-1}^4}{\Left(H_{N,s-2}H_{N,ss-1}^2\右)^2}。 \end{eqnarray*}

参考文献

实施: scipy.stats.zipfian