Zipfian分布¶
随机变量具有带参数的Zipfian分布 \(s \ge 0\) 和 \(N \in \{{1, 2, 3, \dots\}}\) 如果它的概率质量函数由下式给出
\BEGIN{eqnarray *}} p\left(k; s, N \right) & = & \frac{{1}}{{H_{{N, s}}k^{{s}}}}\quad k \in \{{1, 2, \dots, n-1, n\}} \end{{eqnarray* }
哪里
\[H_{N,s}=\sum_{n=1}^{N}\frac{1}{n^{s}}\]
是不是 \(N\) :sup:th‘阶广义调和数 :math:`s 。此发行版的其他功能包括
\BEGIN{eqnarray*}
F\Left(x;s,N\Right)&=&\frac{H_{k,s}}{H_{N,s}},\\
\m&=&\frac{H_{N,s-1}}{H_{N,s}},\\
\MU_{2}&=&\frac{H_{N,s-2}}{H_{N,s}}-\frac{H^2_{N,s-1}}{H^2_{N,s}},\\
\Gamma_1&=&\frac{\frac{H_{N,s-3}}{H_{N,s}}-3\frac{H_{N,s-1}H_{N,s-2}}{H_{N,s}^2}+2\frac{H_{N,s-1}^3}{H_{N,s}^3}{\frac{H_{N,s-2}H_{s-1}^2}{H_{N,s}^2}\右)^{\frac{3}{2},\mbox{和}\\
\Gamma_2&=&\frac{H_{N,s}^3 H_{N,s-4}-4 H_{N,s}^2 H_{N,s-1}H_{N,s-3}+6 H_{N,s}H_{N,s-1}^2 H_{N,s-2}-3 H_{N,s-1}^4}{\Left(H_{N,s-2}H_{N,ss-1}^2\右)^2}。
\end{eqnarray*}
参考文献¶
“齐普夫定律”,维基百科,https://en.wikipedia.org/wiki/Zipf%27s_law
Larry Leemis,“Zipf分布”,单变量分布关系。http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Zipf.pdf