威布尔最小极值分布

一类有下界的极值分布。定义为 \(x>0\)\(c>0\)

\BEGIN{eqnarray*} F\Left(x;c\Right)&=&cx^{c-1}\exp\Left(-x^{c}\Right)\\ F\Left(x;c\Right)&=&1-\exp\Left(-x^{c}\Right)\\ g\Left(q;c\Right)&=&\Left [-\log\left(1-q\right)\right] ^{1/c} \end{eqnarray*}
\[\mu_{n}^{\prime}=\Gamma\left(1+\frac{n}{c}\right)\]
\BEGIN{eqnarray*} \Mu&=&\Gamma\Left(1+\frac{1}{c}\Right)\\ \MU_{2}&=&\Gamma\Left(1+\frac{2}{c}\Right)- \Gamma^{2}\Left(1+\frac{1}{c}\Right)\\ \Gamma_{1}&=&\frac{\Gamma\Left(1+\frac{3}{c}\right)- 3\Gamma\left(1+\frac{2}{c}\right)\Gamma\left(1+\frac{1}{c}\right)+ 2\Gamma^{3}\Left(1+\frac{1}{c}\Right)} {\mu{2}^{3/2}}\\ \Gamma_{2}&=&\frac{\Gamma\Left(1+\frac{4}{c}\right)- 4\Gamma\left(1+\frac{1}{c}\right)\Gamma\left(1+\frac{3}{c}\right)+ 6\Gamma^{2}\left(1+\frac{1}{c}\right)\Gamma\left(1+\frac{2}{c}\right)- 3\Gamma^{4}\Left(1+\frac{1}{c}\Right)} {\mu{2}^{2}}-3\\ M_{d}&=&\BEGIN{案例} \Left(\frac{c-1}{c}\right)^{\frac{1}{c}}&\text{if}\;c>1\\ 0&\text{if}\;c<=1 \结束{案例}\\ m_{n}&=&\ln\Left(2\Right)^{\frac{1}{c}} \end{eqnarray*}
\[H\Left [X\right] =-\frac{\gamma}{c}-\log\left(c\right)+\gamma+1\]

哪里 \(\gamma\) 欧拉常数是否等于

\[\γ\约0.57721566490153286061。\]

实施: scipy.stats.weibull_min