威布尔最大极值分布

定义为 \(x<0\)\(c>0\)

\BEGIN{eqnarray *}} f\left(x;c\right) & = & c\left(-x\right)^{{c-1}}\exp\left(-\left(-x\right)^{{c}}\right)\\ F\left(x;c\right) & = & \exp\left(-\left(-x\right)^{{c}}\right)\\ G\left(q;c\right) & = & -\left(-\log q\right)^{{1/c}}\end{{eqnarray* }

平均值是上面给出的右偏Frechet分布的负值,其他统计参数可以从

\[\mu_{n}^{\prime}=\left(-1\right)^{n}\Gamma\left(1+\frac{n}{c}\right).\]
\BEGIN{eqnarray*} \Mu&=&-\Gamma\Left(1+\frac{1}{c}\Right)\\ \MU_{2}&=&\Gamma\Left(1+\frac{2}{c}\Right)- \Gamma^{2}\Left(1+\frac{1}{c}\Right)\\ \Gamma_{1}&=&-\frac{\Gamma\Left(1+\frac{3}{c}\right)- 3\Gamma\left(1+\frac{2}{c}\right)\Gamma\left(1+\frac{1}{c}\right)+ 2\Gamma^{3}\Left(1+\frac{1}{c}\Right)} {\mu{2}^{3/2}}\\ \Gamma_{2}&=&\frac{\Gamma\Left(1+\frac{4}{c}\right)- 4\Gamma\left(1+\frac{1}{c}\right)\Gamma\left(1+\frac{3}{c}\right)+ 6\Gamma^{2}\left(1+\frac{1}{c}\right)\Gamma\left(1+\frac{2}{c}\right)- 3\Gamma^{4}\Left(1+\frac{1}{c}\Right)} {\mu{2}^{2}}-3\\ M_{d}&=&\BEGIN{案例} -\Left(\frac{c}{c}\right)^{\frac{1}{c}}&\text{if}\;c>1\\ 0&\text{if}\;c<=1 \结束{案例}\\ m_{n}&=&-\ln\Left(2\Right)^{\frac{1}{c}} \end{eqnarray*}
\[H\Left [X\right] =-\frac{\gamma}{c}-\log\left(c\right)+\gamma+1\]

哪里 \(\gamma\) 欧拉常数是否等于

\[\γ\约0.57721566490153286061。\]

实施: scipy.stats.weibull_max