高斯超几何分布¶
这四个形状参数是 \(\alpha>0\) , \(\beta>0\) , \(-\infty < \gamma < \infty\) ,以及 \(z > -1\) 。支持是 \(x\in\left[0,1\right]\) 。
\[\text{设}C=\frac{1}{B\Left(\alpha,\beta\right)\,_{2}F_{1}\Left(\Gamma,\alpha;\alpha+\beta;-z\right)}\]
\BEGIN{eqnarray *}} f\left(x;\alpha,\beta,\gamma,z\right) & = & Cx^{{\alpha-1}}\frac{{\left(1-x\right)^{{\beta-1}}}}{{\left(1+zx\right)^{{\gamma}}}}\\ \mu_{{n}}^{{\prime}} & = & \frac{{B\left(n+\alpha,\beta\right)}}{{B\left(\alpha,\beta\right)}}\frac{{\,_{{2}}F_{{1}}\left(\gamma,\alpha+n;\alpha+\beta+n;-z\right)}}{{\,_{{2}}F_{{1}}\left(\gamma,\alpha;\alpha+\beta;-z\right)}}\end{{eqnarray* }