scipy.stats.loguniform

scipy.stats.loguniform = <scipy.stats._continuous_distns.reciprocal_gen object>[源代码]

对数均匀或倒数连续的随机变量。

作为 rv_continuous 班级, loguniform 对象从它继承一组泛型方法(完整列表请参见下面),并用特定于此特定发行版的详细信息来完成它们。

注意事项

此类的概率密度函数为:

\[F(x,a,b)=\frac{1}{x\log(b/a)}\]

\(a \le x \le b\)\(b > a > 0\) 。这门课需要 \(a\)\(b\) 作为形状参数。

上面的概率密度是以“标准化”形式定义的。若要移动和/或缩放分布,请使用 locscale 参数。具体地说, loguniform.pdf(x, a, b, loc, scale) 等同于 loguniform.pdf(y, a, b) / scale 使用 y = (x - loc) / scale 。请注意,移动分布的位置并不会使其成为“非中心”分布;某些分布的非中心泛化在单独的类中可用。

示例

>>> from scipy.stats import loguniform
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

计算前四个时刻:

>>> a, b = 0.01, 1.25
>>> mean, var, skew, kurt = loguniform.stats(a, b, moments='mvsk')

显示概率密度函数 (pdf ):

>>> x = np.linspace(loguniform.ppf(0.01, a, b),
...                 loguniform.ppf(0.99, a, b), 100)
>>> ax.plot(x, loguniform.pdf(x, a, b),
...        'r-', lw=5, alpha=0.6, label='loguniform pdf')

或者,可以调用分布对象(作为函数)来固定形状、位置和比例参数。这将返回一个“冻结”的RV对象,其中包含固定的给定参数。

冻结分发并显示冻结的 pdf

>>> rv = loguniform(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

检查以下各项的准确性 cdfppf

>>> vals = loguniform.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], loguniform.cdf(vals, a, b))
True

生成随机数:

>>> r = loguniform.rvs(a, b, size=1000)

并比较直方图:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
../../_images/scipy-stats-loguniform-1_00_00.png

这并没有显示出同等的概率 0.010.11 。当x轴按对数缩放时,这是最好的:

>>> import numpy as np
>>> fig, ax = plt.subplots(1, 1)
>>> ax.hist(np.log10(r))
>>> ax.set_ylabel("Frequency")
>>> ax.set_xlabel("Value of random variable")
>>> ax.xaxis.set_major_locator(plt.FixedLocator([-2, -1, 0]))
>>> ticks = ["$10^{{ {} }}$".format(i) for i in [-2, -1, 0]]
>>> ax.set_xticklabels(ticks)  
>>> plt.show()
../../_images/scipy-stats-loguniform-1_01_00.png

此随机变量将是对数均匀的,无论选择的基数是多少 ab 。让我们指定WITH BASE 2 取而代之的是:

>>> rvs = loguniform(2**-2, 2**0).rvs(size=1000)

的值 1/41/21 与这个随机变量的可能性是一样的。这是直方图:

>>> fig, ax = plt.subplots(1, 1)
>>> ax.hist(np.log2(rvs))
>>> ax.set_ylabel("Frequency")
>>> ax.set_xlabel("Value of random variable")
>>> ax.xaxis.set_major_locator(plt.FixedLocator([-2, -1, 0]))
>>> ticks = ["$2^{{ {} }}$".format(i) for i in [-2, -1, 0]]
>>> ax.set_xticklabels(ticks)  
>>> plt.show()
../../_images/scipy-stats-loguniform-1_02_00.png

方法:

rvs(a, b, loc=0, scale=1, size=1, random_state=None)

随机变量。

pdf(x, a, b, loc=0, scale=1)

概率密度函数。

logpdf(x, a, b, loc=0, scale=1)

概率密度函数的对数。

cdf(x, a, b, loc=0, scale=1)

累积分布函数。

logcdf(x, a, b, loc=0, scale=1)

累积分布函数的日志。

sf(x, a, b, loc=0, scale=1)

生存函数(也定义为 1 - cdf ,但是 sf 有时更准确)。

logsf(x, a, b, loc=0, scale=1)

生存函数的对数。

ppf(q, a, b, loc=0, scale=1)

百分点数函数(与 cdf -百分位数)。

isf(q, a, b, loc=0, scale=1)

逆生存函数(逆 sf )。

moment(n, a, b, loc=0, scale=1)

n阶非中心矩

stats(a, b, loc=0, scale=1, moments='mv')

均值(‘m’)、方差(‘v’)、偏斜(‘s’)和/或峰度(‘k’)。

entropy(a, b, loc=0, scale=1)

房车的(微分)熵。

拟合(数据)

一般数据的参数估计。看见 scipy.stats.rv_continuous.fit 有关关键字参数的详细文档,请参阅。

expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, ** kwds)

函数相对于分布的期望值(只有一个参数)。

median(a, b, loc=0, scale=1)

分布的中位数。

mean(a, b, loc=0, scale=1)

分布的平均值。

var(a, b, loc=0, scale=1)

分布的方差。

std(a, b, loc=0, scale=1)

分布的标准差。

interval(alpha, a, b, loc=0, scale=1)

包含分数Alpha的范围的端点 [0, 1] 分布的