scipy.stats.kappa3

scipy.stats.kappa3 = <scipy.stats._continuous_distns.kappa3_gen object>[源代码]

Kappa 3参数分布。

作为 rv_continuous 班级, kappa3 对象从它继承一组泛型方法(完整列表请参见下面),并用特定于此特定发行版的详细信息来完成它们。

注意事项

的概率密度函数 kappa3 是:

\[F(x,a)=a(a+x^a)^{-(a+1)/a}\]

\(x > 0\)\(a > 0\)

kappa3 拿走 a 作为 \(a\)

参考文献

P.W.Mielke和E.S.Johnson,“三参数Kappa分布最大似然和似然比检验”,天气研究方法,701-707,(1973年9月), DOI:10.1175/1520-0493(1973)101<0701:TKDMLE>2.3.CO;2

B.Kumphon,“三参数Kappa分布的最大熵和最大似然估计”,Open Journal of Statistics,第2卷,415-419(2012), DOI:10.4236/ojs.2012.24050

上面的概率密度是以“标准化”形式定义的。若要移动和/或缩放分布,请使用 locscale 参数。具体地说, kappa3.pdf(x, a, loc, scale) 等同于 kappa3.pdf(y, a) / scale 使用 y = (x - loc) / scale 。请注意,移动分布的位置并不会使其成为“非中心”分布;某些分布的非中心泛化在单独的类中可用。

示例

>>> from scipy.stats import kappa3
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

计算前四个时刻:

>>> a = 1
>>> mean, var, skew, kurt = kappa3.stats(a, moments='mvsk')

显示概率密度函数 (pdf ):

>>> x = np.linspace(kappa3.ppf(0.01, a),
...                 kappa3.ppf(0.99, a), 100)
>>> ax.plot(x, kappa3.pdf(x, a),
...        'r-', lw=5, alpha=0.6, label='kappa3 pdf')

或者,可以调用分布对象(作为函数)来固定形状、位置和比例参数。这将返回一个“冻结”的RV对象,其中包含固定的给定参数。

冻结分发并显示冻结的 pdf

>>> rv = kappa3(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

检查以下各项的准确性 cdfppf

>>> vals = kappa3.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], kappa3.cdf(vals, a))
True

生成随机数:

>>> r = kappa3.rvs(a, size=1000)

并比较直方图:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
../../_images/scipy-stats-kappa3-1.png

方法:

rvs(a, loc=0, scale=1, size=1, random_state=None)

随机变量。

pdf(x, a, loc=0, scale=1)

概率密度函数。

logpdf(x, a, loc=0, scale=1)

概率密度函数的对数。

cdf(x, a, loc=0, scale=1)

累积分布函数。

logcdf(x, a, loc=0, scale=1)

累积分布函数的日志。

sf(x, a, loc=0, scale=1)

生存函数(也定义为 1 - cdf ,但是 sf 有时更准确)。

logsf(x, a, loc=0, scale=1)

生存函数的对数。

ppf(q, a, loc=0, scale=1)

百分点数函数(与 cdf -百分位数)。

isf(q, a, loc=0, scale=1)

逆生存函数(逆 sf )。

moment(n, a, loc=0, scale=1)

n阶非中心矩

stats(a, loc=0, scale=1, moments='mv')

均值(‘m’)、方差(‘v’)、偏斜(‘s’)和/或峰度(‘k’)。

entropy(a, loc=0, scale=1)

房车的(微分)熵。

拟合(数据)

一般数据的参数估计。看见 scipy.stats.rv_continuous.fit 有关关键字参数的详细文档,请参阅。

expect(func, args=(a,), loc=0, scale=1, lb=None, ub=None, conditional=False, ** kwds)

函数相对于分布的期望值(只有一个参数)。

median(a, loc=0, scale=1)

分布的中位数。

mean(a, loc=0, scale=1)

分布的平均值。

var(a, loc=0, scale=1)

分布的方差。

std(a, loc=0, scale=1)

分布的标准差。

interval(alpha, a, loc=0, scale=1)

包含分数Alpha的范围的端点 [0, 1] 分布的