scipy.stats.exponweib¶
- scipy.stats.exponweib = <scipy.stats._continuous_distns.exponweib_gen object>[源代码]¶
威布尔指数连续型随机变量。
作为
rv_continuous
班级,exponweib
对象从它继承一组泛型方法(完整列表请参见下面),并用特定于此特定发行版的详细信息来完成它们。注意事项
的概率密度函数
exponweib
是:\[F(x,a,c)=ac [1-\exp(-x^c)] ^{a-1}\exp(-x^c)x^{c-1}\]其累积分布函数为:
\[F(x,a,c)= [1-\exp(-x^c)] ^a\]为 \(x > 0\) , \(a > 0\) , \(c > 0\) 。
exponweib
拿走 \(a\) 和 \(c\) 作为形状参数:\(a\) 是求幂参数,特殊情况下 \(a=1\) 对应于(非指数)威布尔分布
weibull_min
。\(c\) 是非指数威布尔定律的形状参数。
上面的概率密度是以“标准化”形式定义的。若要移动和/或缩放分布,请使用
loc
和scale
参数。具体地说,exponweib.pdf(x, a, c, loc, scale)
等同于exponweib.pdf(y, a, c) / scale
使用y = (x - loc) / scale
。请注意,移动分布的位置并不会使其成为“非中心”分布;某些分布的非中心泛化在单独的类中可用。参考文献
https://en.wikipedia.org/wiki/Exponentiated_Weibull_distribution
示例
>>> from scipy.stats import exponweib >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
计算前四个时刻:
>>> a, c = 2.89, 1.95 >>> mean, var, skew, kurt = exponweib.stats(a, c, moments='mvsk')
显示概率密度函数 (
pdf
):>>> x = np.linspace(exponweib.ppf(0.01, a, c), ... exponweib.ppf(0.99, a, c), 100) >>> ax.plot(x, exponweib.pdf(x, a, c), ... 'r-', lw=5, alpha=0.6, label='exponweib pdf')
或者,可以调用分布对象(作为函数)来固定形状、位置和比例参数。这将返回一个“冻结”的RV对象,其中包含固定的给定参数。
冻结分发并显示冻结的
pdf
:>>> rv = exponweib(a, c) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
检查以下各项的准确性
cdf
和ppf
:>>> vals = exponweib.ppf([0.001, 0.5, 0.999], a, c) >>> np.allclose([0.001, 0.5, 0.999], exponweib.cdf(vals, a, c)) True
生成随机数:
>>> r = exponweib.rvs(a, c, size=1000)
并比较直方图:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
方法:
rvs(a, c, loc=0, scale=1, size=1, random_state=None)
随机变量。
pdf(x, a, c, loc=0, scale=1)
概率密度函数。
logpdf(x, a, c, loc=0, scale=1)
概率密度函数的对数。
cdf(x, a, c, loc=0, scale=1)
累积分布函数。
logcdf(x, a, c, loc=0, scale=1)
累积分布函数的日志。
sf(x, a, c, loc=0, scale=1)
生存函数(也定义为
1 - cdf
,但是 sf 有时更准确)。logsf(x, a, c, loc=0, scale=1)
生存函数的对数。
ppf(q, a, c, loc=0, scale=1)
百分点数函数(与
cdf
-百分位数)。isf(q, a, c, loc=0, scale=1)
逆生存函数(逆
sf
)。moment(n, a, c, loc=0, scale=1)
n阶非中心矩
stats(a, c, loc=0, scale=1, moments='mv')
均值(‘m’)、方差(‘v’)、偏斜(‘s’)和/或峰度(‘k’)。
entropy(a, c, loc=0, scale=1)
房车的(微分)熵。
拟合(数据)
一般数据的参数估计。看见 scipy.stats.rv_continuous.fit 有关关键字参数的详细文档,请参阅。
expect(func, args=(a, c), loc=0, scale=1, lb=None, ub=None, conditional=False, ** kwds)
函数相对于分布的期望值(只有一个参数)。
median(a, c, loc=0, scale=1)
分布的中位数。
mean(a, c, loc=0, scale=1)
分布的平均值。
var(a, c, loc=0, scale=1)
分布的方差。
std(a, c, loc=0, scale=1)
分布的标准差。
interval(alpha, a, c, loc=0, scale=1)
包含分数Alpha的范围的端点 [0, 1] 分布的