scipy.special.ive

scipy.special.ive(v, z) = <ufunc 'ive'>

指数标度的第一类修正贝塞尔函数

定义为:

ive(v, z) = iv(v, z) * exp(-abs(z.real))
参数
v类浮点数组

请遵守秩序。

z浮点或复数的类似数组(_LIKE)

论点。

退货
outndarray

指数缩放的修正贝塞尔函数的值。

注意事项

对于积极的 v ,阿莫斯夫妇 [1] 调用‘zbesii’例程。它使用幂级数,适用于小型 z 的渐近展开式。 abs(z) ,由中量级的Wronskian级数和Neumann级数归一化的Miller算法,以及由Wronskian级数和Neumann级数归一化的 \(I_v(z)\)\(J_v(z)\) 对于大额订单。必要时,向后递归用于生成序列或减少订单。

上述计算在右半平面内进行,并通过公式继续到左半平面,

\[i_v(z\exp(\pm\imath\pi))=\exp(\pm\pi v)i_v(Z)\]

(在以下情况下有效: z 为正)。对于负数 v ,公式

\[i_{-v}(Z)=i_v(Z)+\frac{2}{\pi}\sin(\pi v)K_v(Z)\]

是使用的,其中 \(K_v(z)\) 是修改后的第二类贝塞尔函数,使用amos例程求值。 zbesk

参考文献

1

唐纳德·E·阿莫斯,“AMOS,一种用于复变元和非负阶贝塞尔函数的便携式软件包”,http://netlib.org/amos/