scipy.interpolate.BivariateSpline

class scipy.interpolate.BivariateSpline[源代码]

二元样条的基类。

这描述了一条样条曲线 s(x, y) 度的 kxky 关于矩形 [xb, xe] * [yb, ye] 从一组给定的数据点计算得出 (x, y, z)

这个类应该是子类化的,而不是直接实例化的。要构造这些样条线,请调用 SmoothBivariateSplineLSQBivariateSplineRectBivariateSpline

参见

UnivariateSpline

一种光滑的单变量样条,用于拟合给定的数据点集合。

SmoothBivariateSpline

一种通过给定点的光顺二元样条

LSQBivariateSpline

基于加权最小二乘拟合的二元样条

RectSphereBivariateSpline

球面上矩形网格上的二元样条

SmoothSphereBivariateSpline

球坐标下的光顺二元样条

LSQSphereBivariateSpline

球坐标下加权最小二乘拟合的二元样条

RectBivariateSpline

矩形网格上的二元样条。

bisplrep

求曲面的二元B样条表示的函数

bisplev

二元B样条及其导数的一个求值函数

方法:

__call__ \(X,y[, dx, dy, grid] )

计算给定位置的样条曲线或其导数。

ev \(xi,yi[, dx, dy] )

对点处的样条曲线求值

get_coeffs \()

返回样条系数。

get_knots \()

返回一个元组(tx,ty),其中tx,ty分别包含样条曲线相对于x,y变量的节点位置。

get_residual \()

返回样条近似的平方残差的加权和:SUM((w [i] [(z[i]-s(x[i],y[i])))] *2,轴=0)

integral \(xa,xb,ya,yb)

求面积上样条的积分 [XA、XB] X [是的,yb] 。