摘要: 调和平均数 调和平均数(Harmonic Average)又称倒数平均数,是总体各统计变量倒数的算术平均数的倒数。调和平均数是平均数的一种。但统计调和平均数,与数学调和平均数不同,它是变量倒数的算术平均数的倒数。由于它是根据变量的倒数计算的,所以又称倒数平均数...
调和平均数
调和平均数(Harmonic Average)又称倒数平均数,是总体各统计变量倒数的算术平均数的倒数。调和平均数是平均数的一种。但统计调和平均数,与数学调和平均数不同,它是变量倒数的算术平均数的倒数。由于它是根据变量的倒数计算的,所以又称倒数平均数。调和平均数也有简单调和平均数和加权调和平均数两种。
在数学中调和平均数与算术平均数都是独立的自成体系的。计算结果前者恒小于等于后者。 因而数学调和平均数定义为:数值倒数的平均数的倒数。但统计加权调和平均数则与之不同,它是加权算术平均数的变形,附属于算术平均数,不能单独成立体系。且计算结果与加权算术平均数完全相等。 主要是用来解决在无法掌握总体单位数(频数)的情况下,只有每组的变量值和相应的标志总量,而需要求得平均数的情况下使用的一种数据方法。
调和平均数应用
调和平均数可以用在相同距离但速度不同时,平均速度的计算;如一段路程,前半段时速60公里,后半段时速30公里〔两段距离相等〕,则其平均速度为两者的调和平均数时速40公里。
另外,两个电阻R1, R2并联后的等效电阻R:
\( \frac {}{X} = \frac {∑xf}{∑f} = \frac {1}{ \frac {1/x1 m1+1/x2 m2+…+1/xn mn}{m1+m2+…+mn} } = \frac {1}{ \frac {1/x1+1/x2+…+1/xn}{n} } \)
恰为两电阻和平均数的一半。
调和平均数特点
1.调和平均数易受极端影响,且受极小值的影响比受极大值的影响更大。
2.只要有一个标志值为0,就不能计算调和平均数。
3.当组距数列有开口组时,其组中值即使按相邻组距计算,假定性也很大,这时的调和平均数的代表性很不可靠。
4.调和平均数应用的范围较小。在实际中,往往由于缺乏总体单位数的资料而不能直接计算算术平均数,这时需用调和平均法来求得平均数。