scipy.stats.moyal

scipy.stats.moyal = <scipy.stats._continuous_distns.moyal_gen object>[源代码]

莫亚尔连续随机变量。

作为 rv_continuous 班级, moyal 对象从它继承一组泛型方法(完整列表请参见下面),并用特定于此特定发行版的详细信息来完成它们。

注意事项

的概率密度函数 moyal 是:

\[F(X)=\exp(-(x+\exp(-x))/2)/\sqrt{2\pi}\]

实数 \(x\)

上面的概率密度是以“标准化”形式定义的。若要移动和/或缩放分布,请使用 locscale 参数。具体地说, moyal.pdf(x, loc, scale) 等同于 moyal.pdf(y) / scale 使用 y = (x - loc) / scale 。请注意,移动分布的位置并不会使其成为“非中心”分布;某些分布的非中心泛化在单独的类中可用。

这种分布在高能物理和辐射探测中具有实用价值。它描述了带电相对论粒子由于介质电离而造成的能量损失。 [1]. 它还提供了朗道分布的近似值。有关详细说明,请参见 [2]. 有关其他说明,请参见 [3].

参考文献

1

J·E·莫亚尔,“XXX电离涨落理论”,“伦敦、爱丁堡和都柏林哲学杂志和科学杂志”第46卷,第263-280卷,(1955)。 DOI:10.1080/14786440308521076 (门控)

2

G.Cordeiro等,“Beta MoYAL:一种有用的偏态分布”,“国际应用科学研究与评论杂志”,第10卷,171-192,(2012)。http://www.arpapress.com/Volumes/Vol10Issue2/IJRRAS_10_2_02.pdf

3

C.Walck,“实验者统计分布手册;国际报告SUF-PFY/96-01”,第26章,斯德哥尔摩大学:瑞典斯德哥尔摩,(2007年)。http://www.stat.rice.edu/~dobelman/textfiles/DistributionsHandbook.pdf

1.1.0 新版功能.

示例

>>> from scipy.stats import moyal
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

计算前四个时刻:

>>> mean, var, skew, kurt = moyal.stats(moments='mvsk')

显示概率密度函数 (pdf ):

>>> x = np.linspace(moyal.ppf(0.01),
...                 moyal.ppf(0.99), 100)
>>> ax.plot(x, moyal.pdf(x),
...        'r-', lw=5, alpha=0.6, label='moyal pdf')

或者,可以调用分布对象(作为函数)来固定形状、位置和比例参数。这将返回一个“冻结”的RV对象,其中包含固定的给定参数。

冻结分发并显示冻结的 pdf

>>> rv = moyal()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

检查以下各项的准确性 cdfppf

>>> vals = moyal.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], moyal.cdf(vals))
True

生成随机数:

>>> r = moyal.rvs(size=1000)

并比较直方图:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
../../_images/scipy-stats-moyal-1.png

方法:

rvs(loc=0, scale=1, size=1, random_state=None)

随机变量。

pdf(x, loc=0, scale=1)

概率密度函数。

logpdf(x, loc=0, scale=1)

概率密度函数的对数。

cdf(x, loc=0, scale=1)

累积分布函数。

logcdf(x, loc=0, scale=1)

累积分布函数的日志。

sf(x, loc=0, scale=1)

生存函数(也定义为 1 - cdf ,但是 sf 有时更准确)。

logsf(x, loc=0, scale=1)

生存函数的对数。

ppf(q, loc=0, scale=1)

百分点数函数(与 cdf -百分位数)。

isf(q, loc=0, scale=1)

逆生存函数(逆 sf )。

moment(n, loc=0, scale=1)

n阶非中心矩

stats(loc=0, scale=1, moments='mv')

均值(‘m’)、方差(‘v’)、偏斜(‘s’)和/或峰度(‘k’)。

entropy(loc=0, scale=1)

房车的(微分)熵。

拟合(数据)

一般数据的参数估计。看见 scipy.stats.rv_continuous.fit 有关关键字参数的详细文档,请参阅。

expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, ** kwds)

函数相对于分布的期望值(只有一个参数)。

median(loc=0, scale=1)

分布的中位数。

mean(loc=0, scale=1)

分布的平均值。

var(loc=0, scale=1)

分布的方差。

std(loc=0, scale=1)

分布的标准差。

interval(alpha, loc=0, scale=1)

包含分数Alpha的范围的端点 [0, 1] 分布的