scipy.stats.betabinom¶
- scipy.stats.betabinom = <scipy.stats._discrete_distns.betabinom_gen object>[源代码]¶
贝塔二项离散随机变量。
作为
rv_discrete
班级,betabinom
对象从它继承一组泛型方法(完整列表请参见下面),并用特定于此特定发行版的详细信息来完成它们。注意事项
β-二项分布是具有成功概率的二项分布 p 这是在Beta版之后进行的。
的概率质量函数
betabinom
是:\[F(K)=\binom{n}{k}\frac{B(k+a,n-k+b)}{B(a,b)}\]为 \(k \in \{{0, 1, \dots, n\}}\) , \(n \geq 0\) , \(a > 0\) , \(b > 0\) ,在哪里 \(B(a, b)\) 是贝塔函数。
betabinom
拿走 \(n\) , \(a\) ,以及 \(b\) 作为形状参数。参考文献
上面的概率质量函数是以“标准化”形式定义的。若要移动分布,请使用
loc
参数。具体地说,betabinom.pmf(k, n, a, b, loc)
等同于betabinom.pmf(k - loc, n, a, b)
。1.4.0 新版功能.
示例
>>> from scipy.stats import betabinom >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
计算前四个时刻:
>>> n, a, b = 5, 2.3, 0.63 >>> mean, var, skew, kurt = betabinom.stats(n, a, b, moments='mvsk')
显示概率质量函数 (
pmf
):>>> x = np.arange(betabinom.ppf(0.01, n, a, b), ... betabinom.ppf(0.99, n, a, b)) >>> ax.plot(x, betabinom.pmf(x, n, a, b), 'bo', ms=8, label='betabinom pmf') >>> ax.vlines(x, 0, betabinom.pmf(x, n, a, b), colors='b', lw=5, alpha=0.5)
或者,可以调用分布对象(作为函数)来固定形状和位置。这将返回一个“冻结”的RV对象,其中包含固定的给定参数。
冻结分发并显示冻结的
pmf
:>>> rv = betabinom(n, a, b) >>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ... label='frozen pmf') >>> ax.legend(loc='best', frameon=False) >>> plt.show()
检查以下各项的准确性
cdf
和ppf
:>>> prob = betabinom.cdf(x, n, a, b) >>> np.allclose(x, betabinom.ppf(prob, n, a, b)) True
生成随机数:
>>> r = betabinom.rvs(n, a, b, size=1000)
方法:
rvs(n, a, b, loc=0, size=1, random_state=None)
随机变量。
pmf(k, n, a, b, loc=0)
概率质量函数。
logpmf(k, n, a, b, loc=0)
概率质量函数的对数。
cdf(k, n, a, b, loc=0)
累积分布函数。
logcdf(k, n, a, b, loc=0)
累积分布函数的日志。
sf(k, n, a, b, loc=0)
生存函数(也定义为
1 - cdf
,但是 sf 有时更准确)。logsf(k, n, a, b, loc=0)
生存函数的对数。
ppf(q, n, a, b, loc=0)
百分点数函数(与
cdf
-百分位数)。isf(q, n, a, b, loc=0)
逆生存函数(逆
sf
)。stats(n, a, b, loc=0, moments='mv')
均值(‘m’)、方差(‘v’)、偏斜(‘s’)和/或峰度(‘k’)。
entropy(n, a, b, loc=0)
房车的(微分)熵。
expect(func, args=(n, a, b), loc=0, lb=None, ub=None, conditional=False)
函数相对于分布的期望值(只有一个参数)。
median(n, a, b, loc=0)
分布的中位数。
mean(n, a, b, loc=0)
分布的平均值。
var(n, a, b, loc=0)
分布的方差。
std(n, a, b, loc=0)
分布的标准差。
interval(alpha, n, a, b, loc=0)
包含分数Alpha的范围的端点 [0, 1] 分布的