子集的定义

2016-12-23 作者: xuzhiping 浏览: 660 次

摘要: 子集的定义 子集是一个数学概念,如果集合A的任意一个元素都是集合B的元素(任意a∈A则a∈B),那么集合A称为集合B的子集(subset)。 如果集合A的任意一个元素都是集合B的元素(任意a∈A则a∈B),那么集合A称为集合B的子集,记为A⊆B或 B⊇A,读作....

子集的定义

子集是一个数学概念,如果集合A的任意一个元素都是集合B的元素(任意a∈A则a∈B),那么集合A称为集合B的子集(subset)。

如果集合A的任意一个元素都是集合B的元素(任意a∈A则a∈B),那么集合A称为集合B的子集,记为A⊆B或 B⊇A,读作“集合A包含于集合B”或集合B包含集合A”。即:∀a∈A有a∈B,则A⊆B。

延伸

根据子集的定义,我们知道A⊆A。也就是说,任何一个集合是它本身的子集。

对于空集∅,我们规定∅⊆A,即空集是任何集合的子集。

真子集

如果集合A是B的子集,且A≠B,即B中至少有一个元素不属于A,那么A就是B的真子集,可记作:A⊊B。

如上面的文氏图中,集合A就是集合B的真子集。

随机推荐

Copyright © 2014-2019 OSGeo中国中心 吉ICP备05002032号

Powered by TorCMS