一般正态分布与标准正态分布的区别与联系

一般正态分布与标准正态分布的区别与联系


发布日期: 2016-10-24 更新日期: 2016-11-17 编辑:xuzhiping 浏览次数: 36260

标签:

摘要: 正态分布也叫常态分布,是连续随机变量概率分布的一种,自 然界、人类社会、心理和教育中大量现象均按正态形式分布,例如能力的高低,学生成绩的好坏等都属于正态分布。标准正态分布是正态分布的一种,具有正态分布的所有特征。所有正态分布都可以通过Z分数公式转换成标准正态分...

正态分布也叫常态分布,是连续随机变量概率分布的一种,自 然界、人类社会、心理和教育中大量现象均按正态形式分布,例如能力的高低,学生成绩的好坏等都属于正态分布。标准正态分布是正态分布的一种,具有正态分布的所有特征。所有正态分布都可以通过Z分数公式转换成标准正态分布。   两者特点比较: 

(1)正态分布的形式是对称的,对称轴是经过平均数点的垂线。  

(2)中央点最高,然后逐渐向两侧下降,曲线的形式是先向内弯,再向外弯。 

(3)正态曲线下的面积为1。正态分布是一族分布,它随随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。标准正态分布是正态分布的一种,其平均数和标准差都是固定的,平均数为0,标准差为1。

(4)正态分布曲线下标准差与概率面积有固定数量关系。所有正态分布都可以通过Z分数公式转换成标准正态分布。

主要特征 

1、集中性:正态曲线的高峰位于正中央,即均数所在的位置。

2、对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

3、均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

4、正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。

5、u变换:为了便于描述和应用,常将正态变量作数据转换。

关注公众号
获取免费资源

随机推荐


Copyright © Since 2014. 开源地理空间基金会中文分会 吉ICP备05002032号

Powered by TorCMS

OSGeo 中国中心 邮件列表

问题讨论 : 要订阅或者退订列表,请点击 订阅

发言 : 请写信给: osgeo-china@lists.osgeo.org