伯努利不等式证明

2017-01-03 作者: xuzhiping 浏览: 645 次

摘要: 伯努利不等式:  设x>-1,且x≠0,n是不小于2的整数,则(1+x)n≥1+nx.  证明:  先证明对所有正整数不等式成立。用数学归纳法:  当n=1,上个式子成立, 设对n-1,有:  (1+x)n-1≥1+(n-1)x成立, 则 (1+x)n =(1....

伯努利不等式: 

设x>-1,且x≠0,n是不小于2的整数,则(1+x)n≥1+nx. 

证明: 

先证明对所有正整数不等式成立。用数学归纳法: 

当n=1,上个式子成立, 设对n-1,有: 

(1+x)n-1≥1+(n-1)x成立, 则 (1+x)n =(1+x)n-1(1+x) ≥1+(n-1)x 

=1+(n-1)x+x+(n-1)x2=1+nx+nx2-x2 ≥1+nx 

就是对一切的自然数,当 x≥-1,有 (1+x)n≥1+nx 

下面把伯努利不等式推广到实数幂形式:

若r ≤0或r ≥ 1,有(1+x)r ≥ 1 + rx 若0 ≤ r ≤ 1,有(1+x)r ≤ 1 + rx 

这个不等式可以直接通过微分进行证明,

方法如下: 如果r=0,1,则结论是显然的 

如果r≠0,1,作辅助函数f(x)=(1+x)r-(1+rx), 那么f'(x)=r*(1+x)r-1-r, 则f'(x)=0 ↔ x=0; 

下面分情况讨论: 

1.0 < r < 1,则对于x > 0,f'(x) < 0;对于 − 1 < x < 0,f'(x) > 0

。严格递增,因此f(x)在x = 0处取最大值0,故得(1+x)r ≤ 1+rx。 

2.r < 0或r > 1,则对于x > 0,f'(x) > 0;对于 − 1 < x < 0,f'(x) < 0。

严格递减,因此f(x)在x = 0处取最小值0,故得(1+x)r ≥ 1+rx 

命题得证

随机推荐

Copyright © 2014-2019 OSGeo中国中心 吉ICP备05002032号

Powered by TorCMS