numpy.absolute

numpy.absolute(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'absolute'>

计算绝对值元素。

np.abs 是此函数的简写。

参数
xarray_like

输入数组。

outndarray、none或ndarray和none的元组,可选

存储结果的位置。如果提供,它必须具有输入广播到的形状。如果未提供或没有,则返回新分配的数组。元组(只能作为关键字参数)的长度必须等于输出数。

where阵列式,可选

这种情况通过输入广播。在条件为真的位置 out 数组将被设置为ufunc结果。在其他地方 out 数组将保留其原始值。请注意,如果未初始化 out 数组是通过默认值创建的 out=None ,其中条件为False的位置将保持未初始化状态。

**kwargs

有关其他仅限关键字的参数,请参见 ufunc docs .

返回
absolute恩达雷

包含中每个元素的绝对值的ndarray x . 对于复杂输入, a + ib ,绝对值为 \sqrt{{ a^2 + b^2 }} . 这是一个标量,如果 x 是标量。

实例

>>> x = np.array([-1.2, 1.2])
>>> np.absolute(x)
array([ 1.2,  1.2])
>>> np.absolute(1.2 + 1j)
1.5620499351813308

绘制函数 [-10, 10]

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(start=-10, stop=10, num=101)
>>> plt.plot(x, np.absolute(x))
>>> plt.show()
../../_images/numpy-absolute-1_00_00.png

在复杂平面上绘制函数:

>>> xx = x + 1j * x[:, np.newaxis]
>>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10], cmap='gray')
>>> plt.show()
../../_images/numpy-absolute-1_01_00.png

这个 abs 函数可以用作 np.absolute 在星期天。

>>> x = np.array([-1.2, 1.2])
>>> abs(x)
array([1.2, 1.2])