端到端遥感教程第1-17页


更详细地考虑了监督分类背后的原则。特定波段的像素dns是从场景中已知身份的先验区域中选择的,也就是说,可以命名为真实特征、材料等的类,这一事实允许建立成为设置统计参数基础的培训站点。用于对这些站点之外的像素进行分类。为莫罗湾场景选择训练场地的过程,连同光谱特征图、统计方法表和场地样本大小说明了该分类模式涉及的准备阶段。


监督分类

Supervised classification is much more accurate for mapping classes, but depends heavily on the cognition and skills of the image specialist. The strategy is simple: the specialist must recognize conventional classes (real and familiar) or meaningful (but somewhat artificial) classes in a scene from prior knowledge, such as, personal experience with the region, by experience with thematic maps, or by on-site visits. This familiarity allows the specialist to choose and set up discrete classes (thus supervising the selection) and the, assign them category names. The specialists also locate training sites on the image to identify the classes. Training sites are areas representing each known land cover category that appear fairly homogeneous on the image (as determined by similarity in tone or color within shapes delineating the category). Specialists locate and circumscribe them with polygonal boundaries drawn (using the computer mouse) on the image display. For each class thus outlined, mean values and variances of the DNs for each band used to classify them are calculated from all the pixels enclosed in the site. More than one polygon can be established for any class. When DNs are plotted as a function of the band sequence (increasing with wavelength), the result is a spectral signature or spectral response curve for that class. In reality the spectral signature is for all of the materials within the site that interact with the incoming radiation. Classification now proceeds by statistical processing in which every pixel is compared with the various signatures and assigned to the class whose signature comes closest. A few pixels in a scene do not match and remain unclassified, because these may belong to a class not recognized or defined).

莫罗湾的许多场景几乎都是不言而喻的海水、海浪、海滩、沼泽、阴影。在实践中,我们可以进一步隔离几个这样的类。例如,我们可以区分海洋和海湾水域,但它们在光谱特性上的大体相似性可能会使分离变得困难。其他可能相互变异的类别,例如,当陆地卫星飞过时,面对早晨太阳的斜坡与面对面的斜坡,可能是有必要的。有些类别是基于广泛的,代表两个或更多相关的表面材料,这些表面材料在高分辨率下可能是可分离的,但在TM图像中不准确地表示出来。在这一类中,我们可以包括树木、森林和植被茂盛的地区(高尔夫球场或耕地)。

对于监督分类的第一次尝试,我们展示了13个离散类。他们训练场地的轮廓线是在真彩色(波段1,2,3)合成图上绘制的,如图所示。(请注意,他们的站点颜色是为方便显示而分配的,与下一页所示的地图中的类等效颜色不对应)。

|为Morro Bay场景设置的每个课程的培训地点和颜色键的位置都叠加在该场景的真彩色图像上。|

请注意,在签名阶段,idrisi没有为它们命名。相反,idrisi会给它们编号,并在稍后指定名称。一些课程从多个培训站点获取数据。idrisi有一个模块sigcomp,用于绘制每个类的签名。这里我们展示了8个一般类别的图(与上面显示的培训站点不同;这样做是为了简化。这些是海洋=深蓝色;波浪=绿色;海滩=浅蓝色;城镇=褐红色;沼泽=紫色;植被=橄榄色;山坡=浅灰色;阴影=深灰色。除6条(在横坐标上列为Morobay1…、Morobay2等)外,其他所有TM带均参与。坐标值在0到255之间。

每个波段的签名位置都有些人为,因为原始数据没有根据相对增益进行调整;这尤其影响波段1和5。然而,从这些图中可以清楚地看出,在所使用的6个波段中,大多数特征信号彼此不同,即使在由几个相邻波段(如TM1和TM2之间除了波浪和海滩之外的所有波段)组成的间隔中,有些特征信号间隔很近(几乎重合)。所有类别之间的最大可分离性出现在5级。

idrisi还拥有一个程序,该程序为每个签名提供像素信息,记录有助于数据的像素数量,以及每个签名的dn值的平均值、最大值、最小值和标准偏差。为了帮助您更深入地了解这些计算中涉及的数值输入,我们在下表中复制了这些数据的简化版本:

每节课训练集的波段平均数和样本量表

乐队:

1

2

3

4

5

6(第十)

7

不。

像素

等级

  1. 海水

57.4

16.0

12.0

5.6

3.4

112.0

1.5

2433

  1. 沉淀1

62.2

19.6

13.5

5.6

3.5

112.2

1.6

681

  1. 沉淀2

69.8

25.3

18.8

6.3

3.5

112.2

1.5

405

  1. 海湾沉积物

59.6

20.2

16.9

6.0

3.4

111.9

1.6

598

  1. 沼泽

61.6

22.8

27.2

42.0

37.3

117.9

14.9

861

  1. 波浪冲浪

189.5

88.0

100.9

56.3

22.3

111.9

6.4

1001

  1. 沙子

90.6

41.8

54.2

43.9

86.3

121.3

52.8

812

  1. 城市一号

77.9

32.3

39.3

37.5

53.9

123.5

29.6

747

  1. 城市二号

68.0

27.0

32.7

36.3

52.9

125.7

27.7

2256

  1. 太阳坡

75.9

31.7

40.8

43.5

107.2

126.5

51.4

5476

  1. 阴影坡度

51.8

15.6

13.8

15.6

14.0

109.8

5.6

976

  1. 灌木林

66.0

24.8

29.0

27.5

58.4

114.3

29.4

1085

67.9

27.6

32.0

49.9

89.2

117.4

39.3

590

  1. 领域

59.9

22.7

22.6

54.5

46.6

115.8

18.3

259

55.8

19.6

20.2

35.7

42.0

108.8

16.6

2048

  1. 变明朗

73.7

30.5

39.2

37.1

88.4

127.9

45.2

309


` <>`__1-22: Examine the signature plots and the table. What can you say about the plots in terms of similarities and differences? Based on numbers in the table, would you predict any notable differences in the signatures for towns; marsh; sunlit hillslopes and shadows? `ANSWER <Sect1_zanswer.html#1-22>`__

我们可以从这个表中推断出,大多数签名都有dn值的组合,允许我们根据实际的标准偏差(未显示)区分其他签名。在前四个波段中,城市1和清除(地面)这两个等级非常相似,但在波段5和7中,显然差异很大,足以假设它们是可分离的。热带6的变化范围比其他带小得多,这表明其作为高效分离器的局限性。然而,正如我们接下来将看到的,它添加到最大似然分类中会增加一些分类的空间同质性。


主要作者:Nicholas M.Short,高级电子邮件: nmshort@nationi.net