DimensionalityReduction

对输入图像执行降维。

描述

对输入图像执行降维。主成分分析方法、NA-PCA方法、MAF方法、ICA方法都是可用的。还可以计算逆变换以重建图像,并可选地将变换矩阵导出到文本文件。

这个应用程序有几个输出图像,并支持“多写”。不是独立地计算和写入每个图像,而是以同步的方式为每个输出写入流图像块。输出图像将逐条计算,使用可用的RAM计算条带大小,并且可以使用流扩展文件名(类型、模式和值)指定用户定义的流模式。请注意,可以使用多写扩展文件名选项禁用多写,在这种情况下,将逐个写入输出图像。请注意,MPI编写器不支持多重写入。

参数

Input Image -in image Mandatory
The input image to apply dimensionality reduction.

Output Image -out image [dtype]
output image. Components are ordered by decreasing eigenvalues.

Rescale Output -rescale [no|minmax] Default value: no
Enable rescaling of the reduced output image.

  • No rescale
  • rescale to min max value

重缩放至最小最大值选项

Output min value -rescale.minmax.outmin float Default value: 0
Minimum value of the output image.

Output max value -rescale.minmax.outmax float Default value: 255
Maximum value of the output image.


** Inverse Output Image** -outinv image [dtype]
reconstruct output image.

Algorithm -method [pca|napca|maf|ica] Default value: pca
Selection of the reduction dimension method.

  • PCA
    Principal Component Analysis.
  • NA-PCA
    Noise Adjusted Principal Component Analysis.
  • MAF
    Maximum Autocorrelation Factor.
  • ICA
    Independent Component Analysis using a stabilized fixed point FastICA algorithm.

PCA选项

Output file containing eigenvalues (txt format) -method.pca.outeigenvalues filename [dtype]
Output file containing eigenvalues (txt format).

Perform pca whitening -method.pca.whiten bool Default value: true
Perform whitening and ensure uncorrelated outputs with unit component wise variances

NA-PCA选项

Set the x radius of the sliding window -method.napca.radiusx int Default value: 1

Set the y radius of the sliding window -method.napca.radiusy int Default value: 1

ICA选项

number of iterations -method.ica.iter int Default value: 20

Give the increment weight of W in [0, 1] -method.ica.mu float Default value: 1

Nonlinearity -method.ica.g [tanh|exp|u3] Default value: tanh
Nonlinearity used in the FastICA algorithm

  • tanh
    g(x) = tanh(x)
  • exp
    g(x) = -exp(-x^2/2)
  • u^3
    g(x) = u^3(x)

Number of Components -nbcomp int Default value: 0
Number of relevant components kept. By default all components are kept.

Center and reduce data -normalize bool Default value: false
Center and reduce data before Dimensionality reduction (if this parameter is set to false, the data will be centered but not reduced.

Transformation matrix output (text format) -outmatrix filename [dtype]
Filename to store the transformation matrix (csv format)

Background Value -bv float
Background value to ignore in computation of the transformation matrix. Note that all pixels will still be processed when applying the transformation.

Available RAM (MB) -ram int Default value: 256
Available memory for processing (in MB).

实例

从命令行执行以下操作:

otbcli_DimensionalityReduction -in cupriteSubHsi.tif -out FilterOutput.tif -method pca

来自Python的评论:

import otbApplication

app = otbApplication.Registry.CreateApplication("DimensionalityReduction")

app.SetParameterString("in", "cupriteSubHsi.tif")
app.SetParameterString("out", "FilterOutput.tif")
app.SetParameterString("method","pca")

app.ExecuteAndWriteOutput()

局限性

此应用程序不提供MAF的逆变换和变换矩阵导出。MAF和ICA不支持背景值选项。

另请参阅

<核最大自相关因子和最小噪声分数变换>,IEEE图像处理学报,第20卷,第3期,第612-624页,(2011)