仿射李代数的可积最高权表示

在本节中 mathfrak{g} 可以是由可对称化的、不可分解的Cartan矩阵构成的任意Kac-Moody李代数。

Suppose that V is a representation with a weight space decomposition as in 根和权. Let alpha be a real root, and let mathfrak{g}_alpha be the corresponding root space, that is, the one-dimensional weight space for alpha in the adjoint representation of mathfrak{g} on itself. Then -alpha is also a root. The two one-dimensional spaces mathfrak{g}_alpha and mathfrak{g}_{-alpha} generate a Lie algebra isomorphic to mathfrak{sl}_2. The module V is called integrable if for each such alpha the representation of mathfrak{sl}_2 obtained this way integrates to a representation of the Lie group operatorname{SL}_2. Since this group contains an element that stabilizes mathfrak{h} and induces the corresponding simple reflection on the weight lattice, integrability implies that the weight multiplicities are invariant under the action of the Weyl group.

如果Kac-Moody李代数 mathfrak{g} 是有限维的,那么可积的最高权表示就是不可约的有限维表示。对于一般的Kac-Moody李代数,可积的最高权表示是有限维表示的类似,即具有 WeylCharacterRing 元素。他们的理论与有限维单李代数的有限维表示有许多共同之处,例如通过支配权的参数化,以及由Macdonald和Kac分别推广的Weyl分母和特征标公式。

如果 Lambda 是支配权,则是不可约的最高权模 L(Lambda) 定义于 根和权 是可积的。此外,每个最高权可积表示都是这样产生的,所以这些表示与锥体是双射的 P^+ 占主导地位的重量。

仿射情形

现在我们假设 mathfrak{g} 是仿射的。可积的最高权表示(及其晶体)非常有趣。的可积最高权表示 mathfrak{g} 从弦理论到对称群的模表示理论,再到模形式理论,各种背景下都出现了这一概念。该表示法 L(Lambda_0) 尤其普遍存在,并被称为 basic representation

因此,在 [KMPS] (发表于1990年)列出了其中许多申述的数据。他们写道

我们以表格的形式提供了大量的数字数据,这是此类信息的唯一来源。当需要单独进行计算时,计算是乏味的,并且不是特别简单。我们希望这本书的出版将激发人们对这个领域的兴趣,在短短20年的时间里,这个领域已经变得非常有价值,对未来充满希望。如果这些表格在2040年的科学家看来就像我们今天看到的那些尘埃落定的超越函数汇编一样过时,那将是一件令人欣慰的事情,因为它们可以在每一个袖珍计算器上使用。

正如我们将解释的,Sage可以重现这些表的内容。此外,中的表格 [KMPS] 仅限于非扭曲类型,但Sage也实现了扭曲类型。

尽管Sage可以复制第二卷中的表格 [KMPS], 这项工作仍然非常有用。第一卷是对仿射李代数的可积表示理论的切合实际和非常有帮助的阐述,带有明确的例子,并解释了与数学物理和顶点算子的联系。

一个可积最高权表示的支撑性

Let Lambda in P^+ and let V = L(Lambda) be the integrable representation with highest weight Lambda. If mu is another weight, let operatorname{mult}(mu) denote the multiplicity of the weight mu in L(Lambda). Define the support of the representation operatorname{supp}(V) to be the set of mu such that operatorname{mult}(mu) > 0.

If operatorname{mult}(mu) > 0 then lambda-mu is a linear combination of the simple roots with nonnegative integer coefficients. Moreover operatorname{supp}(V) is contained in the paraboloid

\[(\Lambda+\rho | \Lambda+\rho) - (\mu+\rho | \mu+\rho) \geq 0\]

where (, | ,) is the invariant inner product on the weight lattice and rho is the Weyl vector (非扭曲仿射Kac-Moody李代数). Moreover if mu in operatorname{supp}(V) then Lambda - mu is an element of the root lattice Q ([Kac], Propositions 11.3 and 11.4).

We organize the weight multiplicities into sequences called string functions or strings as follows. By [Kac], Proposition 11.3 or Corollary 11.9, for fixed mu the function operatorname{mult}(mu - kdelta) of k is an increasing sequence. We adjust mu by a multiple of delta to the beginning of the positive part of the sequence. Thus we define mu to be maximal if operatorname{mult}(mu) neq 0 but operatorname{mult}(mu + delta) = 0.

Since delta is fixed under the action of the affine Weyl group, and since the weight multiplicities are Weyl group invariant, the function k mapsto operatorname{mult}(mu - k delta) is unchanged if mu is replaced by w(mu) for some Weyl group element w. Now every Weyl orbit contains a dominant weight. Therefore in enumerating the string we may assume that the weight mu is dominant. There are only a finite number of dominant maximal weights. Thus there are only a finite number of such strings to be computed.

模数形式

值得注意的是, [KacPeterson] 证明了每个字符串都是弱全纯模形式的傅里叶系数的集合;另请参阅 [Kac] 第12章和第13章。在这里 weakly holomorphic modular 表示允许窗体的尖端有杆子。

为此,我们定义 modular characteristic

\[m_\Lambda = \frac{|\Lambda+\rho|^2}{2(k+h^\vee)} - \frac{|\rho|^2}{2h^\vee}.\]

Here k = (Lambda | delta) is the level of the representation and h^vee is the dual Coxeter number (标签和Coxeter编号). If mu is a weight, define

\[m_{\Lambda,\mu} = m_\Lambda - \frac{|\mu|^2}{2k}.\]

让我们 Lambda 是一个重量,我们可以假定它是最大的重量。然后Kac和Peterson定义了 string function

\[c_\mu^\Lambda = q^{m_{\Lambda,\mu}} \sum_{n\in\ZZ} \operatorname{mult}(\mu - n\delta) q^n.\]

虽然它们在弦理论中确实是作为配分函数出现的,但这里的术语“弦”并不是指物理弦。

The string function c_mu^Lambda is a weakly holomorphic modular form, possibly of half-integral weight. See [Kac], Corollary 13.10, or [KacPeterson]. It can have poles at infinity, but multiplying c_mu^Lambda by eta(tau)^{dim,mathfrak{g}^circ} gives a holomorphic modular form (for some level). Here eta is the Dedekind eta function:

\[\eta(\tau) = q^{1/24} \prod_{k=1}^\infty(1-q^k), \qquad q = e^{2\pi i \tau}.\]

The weight of this modular form eta(tau)^{dim,mathfrak{g}^circ} c^Lambda_lambda is the number of positive roots of mathfrak{g}^circ.

可积表示的SAGE方法

在这一节中,我们将展示如何使用Sage来计算仿射李代数的最高权可积表示。有关更多文档,请参阅参考手册 IntegrableRepresentation

In the following example, we work with the integrable representation with highest weight 2 Lambda_0 for widehat{mathfrak{sl}}_2, that is, A_1^{(1)}. First we create a dominant weight in the extended weight lattice, then create the IntegrableRepresentation class. We compute the strings. There are two, since there are two dominant maximal weights. One of them is the highest weight 2Lambda_0, and the other is 2Lambda_1 - delta:

sage: L = RootSystem("A1~").weight_lattice(extended=True)
sage: Lambda = L.fundamental_weights()
sage: delta = L.null_root()
sage: W = L.weyl_group(prefix="s")
sage: s0, s1 = W.simple_reflections()
sage: V = IntegrableRepresentation(2*Lambda[0])
sage: V.strings()
{2*Lambda[0]: [1, 1, 3, 5, 10, 16, 28, 43, 70, 105, 161, 236],
 2*Lambda[1] - delta: [1, 2, 4, 7, 13, 21, 35, 55, 86, 130, 196, 287]}
sage: mw1, mw2 = V.dominant_maximal_weights(); mw1, mw2
(2*Lambda[0], 2*Lambda[1] - delta)

我们看到有两个占主导地位的最大权重, 2 Lambda_02 Lambda_1 - delta 。通过应用Weyl群元,我们得到了每一个最大权。它们位于中描述的抛物面内 一个可积最高权表示的支撑性 。以下是更多的最大权重:

sage: pairs = [(s0*s1*s0, mw1), (s0*s1, mw2), (s0, mw1), (W.one(), mw2),
....:          (W.one(), mw1), (s1, mw2), (s1*s0, mw1), (s1*s0*s1, mw2)]
sage: [w.action(mw) for (w, mw) in pairs]
[-6*Lambda[0] + 8*Lambda[1] - 8*delta,
 -4*Lambda[0] + 6*Lambda[1] - 5*delta,
 -2*Lambda[0] + 4*Lambda[1] - 2*delta,
 2*Lambda[1] - delta,
 2*Lambda[0],
 4*Lambda[0] - 2*Lambda[1] - delta,
 6*Lambda[0] - 4*Lambda[1] - 2*delta,
 8*Lambda[0] - 6*Lambda[1] - 5*delta]

我们确认Weyl轨道上的弦函数与Weyl轨道上的弦函数相同 mw2 ,计算如下:

sage: s1.action(mw2)
4*Lambda[0] - 2*Lambda[1] - delta
sage: [V.mult(s0.action(mw2)-k*delta) for k in [0..10]]
[1, 2, 4, 7, 13, 21, 35, 55, 86, 130, 196]

可积表示的字符串函数经常出现在在线整数序列百科全书中:

sage: [oeis(x) for x in V.strings().values()]    # optional - internet
[0: A233758: Bisection of A006950 (the even part).,
 0: A233759: Bisection of A006950 (the odd part).]

阅读OEIS告诉我们的关于序列的信息 :oeis:`A006950` ,我们了解到这两根弦是该系列的奇偶部分

\[\prod_{k=1}^\infty \frac{1+q^{2k-1}}{1-q^{2k}} = \prod_{k=1}^\infty \frac{1-q^{2k}}{(1-q^k)(1-q^{4k})} = q^{1/8} \frac{\eta(2\tau)}{\eta(\tau)\eta(4\tau)}\]

这是 not 一种模数形式,因为因子 q^{1/8} 前面是ETA函数的比值。

让我们通过计算上述产品来确认在线百科全书告诉我们的内容:

sage: PS.<q> = PowerSeriesRing(QQ)
sage: prod([(1+q^(2*k-1))/(1-q^(2*k)) for k in [1..20]])
1 + q + q^2 + 2*q^3 + 3*q^4 + 4*q^5 + 5*q^6 + 7*q^7 + 10*q^8
 + 13*q^9 + 16*q^10 + 21*q^11 + 28*q^12 + 35*q^13 + 43*q^14
 + 55*q^15 + 70*q^16 + 86*q^17 + 105*q^18 + 130*q^19 + O(q^20)

我们可以看到该产品中散布的两个字符串的值,其中 2 Lambda_0 偶数位置的字符串值和 2 Lambda_1 - delta 奇数位置的值。

要计算 c^{2Lambda_0}_lambda ,这是一个模形式,我们必须计算它的模特征。我们对以下情况很感兴趣 lambda 是两个主要的最大权重之一:

sage: [V.modular_characteristic(x) for x in [2*Lambda[0], 2*Lambda[1]-delta]]
[-1/16, 7/16]

这为我们提供了字符串函数

\[\begin{split}\begin{aligned} c^{2\Lambda_0}_{2\Lambda_0} & = q^{-1/16}(1+q+3q^2+5q^3+10q^4+16q^5+\cdots),\\ c^{2\Lambda_0}_{2\Lambda_1-\delta} & = q^{7/16}(1+2q+4q^2+7q^3+13q^4+21q^5+\cdots). \end{aligned}\end{split}\]

这两个都是弱全纯模形式。这两者的任何线性组合也是弱全纯模形式。例如,我们可以替换 tau 通过 tau/2 在我们以前的身份中并获得

\[c^{2\Lambda_0}_{2\Lambda_0} + c^{2\Lambda_0}_{2\Lambda_1-\delta} = \frac{\eta(\tau)}{\eta(\tau/2)\eta(2\tau)}.\]

更多的例子可以在 [KacPeterson][KMPS].

Let V be the integrable highest weight representation with highest weight Lambda. If mu is in the support of V then Lambda - mu is of the form sum_i n_ialpha_i where alpha_i are the simple roots. Sage employs an internal representation of the weights as tuples (n_0, n_1, ldots). You can convert weights to and from this notation as follows:

sage: L = RootSystem(['E',6,2]).weight_lattice(extended=True)
sage: Lambda = L.fundamental_weights()
sage: delta = L.null_root()
sage: V = IntegrableRepresentation(Lambda[0])
sage: V.strings()
{Lambda[0]: [1, 2, 7, 14, 35, 66, 140, 252, 485, 840, 1512, 2534]}
sage: V.to_weight((1,2,0,1,0))
Lambda[0] - 3*Lambda[1] + 4*Lambda[2] - 2*Lambda[3] + Lambda[4] - delta
sage: V.from_weight(Lambda[0] - 3*Lambda[1] + 4*Lambda[2] - 2*Lambda[3] + Lambda[4] - delta)
(1, 2, 0, 1, 0)
sage: V.from_weight(Lambda[0]-delta)
(1, 2, 3, 2, 1)

在报告字符串时,可以设置可选参数Depth以获得更多或更少的值。在某些情况下,即使是弦的第一个系数也是重要的。看见 [JayneMisra2014][KimLeeOh2017].

加泰罗尼亚数字 (:oeis:`A000108` ):

sage: P = RootSystem(['A',12,1]).weight_lattice(extended=true)
sage: Lambda = P.fundamental_weights()
sage: IntegrableRepresentation(2*Lambda[0]).strings(depth=1) # long time
{2*Lambda[0]: [1],
 Lambda[1] + Lambda[12] - delta: [1],
 Lambda[2] + Lambda[11] - 2*delta: [2],
 Lambda[3] + Lambda[10] - 3*delta: [5],
 Lambda[4] + Lambda[9] - 4*delta: [14],
 Lambda[5] + Lambda[8] - 5*delta: [42],
 Lambda[6] + Lambda[7] - 6*delta: [132]}

加泰罗尼亚三角数 (:oeis:`A000245` ):

sage: sorted(IntegrableRepresentation(Lambda[0]+Lambda[2]).strings(depth=1).values()) # long time
[[1], [3], [9], [12], [28], [90], [297]]

中心二项式系数 (:oeis:`A001700`:oeis:`A128015` ):

sage: P = RootSystem(['B',8,1]).weight_lattice(extended=true)
sage: Lambda = P.fundamental_weights()
sage: sorted(IntegrableRepresentation(Lambda[0]+Lambda[1]).strings(depth=1).values()) # long time
[[1], [1], [1], [3], [3], [10], [10], [35], [35], [126]]