摘要: 不定积分基本公式 \(\int kdx = kx+c\) \(\int x^ndx =\frac{x^(n+1)}{n+1}+c\) \(\int e^xdx =e^x+c\) \(\int a^xdx =a^x\times (\frac{1}{lna})+c...
不定积分基本公式
\(\int kdx = kx+c\)
\(\int x^ndx =\frac{x^(n+1)}{n+1}+c\)
\(\int e^xdx =e^x+c\)
\(\int a^xdx =a^x\times (\frac{1}{lna})+c\)
\(\int \frac{1}{x}dx =ln|x|+c\)
\(\int sinxdx =-cosx+c\)
\(\int cosxdx =sinx+c\)
\(\int tanxdx =-ln|cosx|+c\)
\(\int cotxdx =ln|sinx|+c\)
\(\int cscxdx =ln|cscx+cotx|+c\)
\(\int secxdx =ln|secx+tanx|+c\)
\(\int \frac{1}{sin^2x}dx =\int csc^2xdx=-cotx+c\)
\(\int \frac{1}{cos^2x}dx =\int sec^2xdx=tanx+c\)
\(\int \frac{1}{1+x^2}dx =arctanx+c\)
\(\int \frac{1}{\sqrt{1-x^2}}dx = arctanx+c\)