astropy.uncertainty.core 源代码

# -*- coding: utf-8 -*-
# Licensed under a 3-clause BSD style license - see LICENSE.rst

Distribution class and associated machinery.

import numpy as np

from astropy import units as u
from astropy import stats

__all__ = ['Distribution']

# we set this by hand because the symbolic expression (below) requires scipy
# SMAD_SCALE_FACTOR = 1 / scipy.stats.norm.ppf(0.75)
SMAD_SCALE_FACTOR = 1.48260221850560203193936104071326553821563720703125

[文档]class Distribution: """ A scalar value or array values with associated uncertainty distribution. This object will take its exact type from whatever the ``samples`` argument is. In general this is expected to be an `~astropy.units.Quantity` or `numpy.ndarray`, although anything compatible with `numpy.asanyarray` is possible. See also: Parameters ---------- samples : array_like The distribution, with sampling along the *leading* axis. If 1D, the sole dimension is used as the sampling axis (i.e., it is a scalar distribution). """ _generated_subclasses = {} def __new__(cls, samples): if isinstance(samples, Distribution): samples = samples.distribution else: samples = np.asanyarray(samples, order='C') if samples.shape == (): raise TypeError('Attempted to initialize a Distribution with a scalar') new_dtype = np.dtype({'names': ['samples'], 'formats': [(samples.dtype, (samples.shape[-1],))]}) samples_cls = type(samples) new_cls = cls._generated_subclasses.get(samples_cls) if new_cls is None: # Make a new class with the combined name, inserting Distribution # itself below the samples class since that way Quantity methods # like ".to" just work (as .view() gets intercepted). However, # repr and str are problems, so we put those on top. # TODO: try to deal with this at the lower level. The problem is # that array2string does not allow one to override how structured # arrays are typeset, leading to all samples to be shown. It may # be possible to hack oneself out by temporarily becoming a void. new_name = samples_cls.__name__ + cls.__name__ new_cls = type( new_name, (_DistributionRepr, samples_cls, ArrayDistribution), {'_samples_cls': samples_cls}) cls._generated_subclasses[samples_cls] = new_cls self = samples.view(dtype=new_dtype, type=new_cls) # Get rid of trailing dimension of 1. self.shape = samples.shape[:-1] return self @property def distribution(self): return self['samples'] def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): converted = [] outputs = kwargs.pop('out', None) if outputs: kwargs['out'] = tuple((output.distribution if isinstance(output, Distribution) else output) for output in outputs) if method in {'reduce', 'accumulate', 'reduceat'}: axis = kwargs.get('axis', None) if axis is None: assert isinstance(inputs[0], Distribution) kwargs['axis'] = tuple(range(inputs[0].ndim)) for input_ in inputs: if isinstance(input_, Distribution): converted.append(input_.distribution) else: shape = getattr(input_, 'shape', ()) if shape: converted.append(input_[..., np.newaxis]) else: converted.append(input_) results = getattr(ufunc, method)(*converted, **kwargs) if not isinstance(results, tuple): results = (results,) if outputs is None: outputs = (None,) * len(results) finals = [] for result, output in zip(results, outputs): if output is not None: finals.append(output) else: if getattr(result, 'shape', False): finals.append(Distribution(result)) else: finals.append(result) return finals if len(finals) > 1 else finals[0] @property def n_samples(self): """ The number of samples of this distribution. A single `int`. """ return self.dtype['samples'].shape[0]
[文档] def pdf_mean(self, dtype=None, out=None): """ The mean of this distribution. Arguments are as for `numpy.mean`. """ return self.distribution.mean(axis=-1, dtype=dtype, out=out)
[文档] def pdf_std(self, dtype=None, out=None, ddof=0): """ The standard deviation of this distribution. Arguments are as for `numpy.std`. """ return self.distribution.std(axis=-1, dtype=dtype, out=out, ddof=ddof)
[文档] def pdf_var(self, dtype=None, out=None, ddof=0): """ The variance of this distribution. Arguments are as for `numpy.var`. """ return self.distribution.var(axis=-1, dtype=dtype, out=out, ddof=ddof)
[文档] def pdf_median(self, out=None): """ The median of this distribution. Parameters ---------- out : array, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. """ return np.median(self.distribution, axis=-1, out=out)
[文档] def pdf_mad(self, out=None): """ The median absolute deviation of this distribution. Parameters ---------- out : array, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. """ median = self.pdf_median(out=out) absdiff = np.abs(self - median) return np.median(absdiff.distribution, axis=-1, out=median, overwrite_input=True)
[文档] def pdf_smad(self, out=None): """ The median absolute deviation of this distribution rescaled to match the standard deviation for a normal distribution. Parameters ---------- out : array, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. """ result = self.pdf_mad(out=out) result *= SMAD_SCALE_FACTOR return result
[文档] def pdf_percentiles(self, percentile, **kwargs): """ Compute percentiles of this Distribution. Parameters ---------- percentile : float or array of floats or `~astropy.units.Quantity` The desired precentiles of the distribution (i.e., on [0,100]). `~astropy.units.Quantity` will be converted to percent, meaning that a ``dimensionless_unscaled`` `~astropy.units.Quantity` will be interpreted as a quantile. Additional keywords are passed into `numpy.percentile`. Returns ------- percentiles : `~astropy.units.Quantity` The ``fracs`` percentiles of this distribution. """ percentile = u.Quantity(percentile, u.percent).value percs = np.percentile(self.distribution, percentile, axis=-1, **kwargs) # numpy.percentile strips units for unclear reasons, so we have to make # a new object with units if hasattr(self.distribution, '_new_view'): return self.distribution._new_view(percs) else: return percs
[文档] def pdf_histogram(self, **kwargs): """ Compute histogram over the samples in the distribution. Parameters ---------- All keyword arguments are passed into `astropy.stats.histogram`. Note That some of these options may not be valid for some multidimensional distributions. Returns ------- hist : array The values of the histogram. Trailing dimension is the histogram dimension. bin_edges : array of dtype float Return the bin edges ``(length(hist)+1)``. Trailing dimension is the bin histogram dimension. """ distr = self.distribution raveled_distr = distr.reshape(distr.size//distr.shape[-1], distr.shape[-1]) nhists = [] bin_edges = [] for d in raveled_distr: nhist, bin_edge = stats.histogram(d, **kwargs) nhists.append(nhist) bin_edges.append(bin_edge) nhists = np.array(nhists) nh_shape = self.shape + (nhists.size//self.size,) bin_edges = np.array(bin_edges) be_shape = self.shape + (bin_edges.size//self.size,) return nhists.reshape(nh_shape), bin_edges.reshape(be_shape)
class ScalarDistribution(Distribution, np.void): """Scalar distribution. This class mostly exists to make `~numpy.array2print` possible for all subclasses. It is a scalar element, still with n_samples samples. """ pass class ArrayDistribution(Distribution, np.ndarray): # This includes the important overrride of view and __getitem__ # which are needed for all ndarray subclass Distributions, but not # for the scalar one. _samples_cls = np.ndarray # Override view so that we stay a Distribution version of the new type. def view(self, dtype=None, type=None): if type is None: if issubclass(dtype, np.ndarray): type = dtype dtype = None else: raise ValueError('Cannot set just dtype for a Distribution.') result = self.distribution.view(dtype, type) return Distribution(result) # Override __getitem__ so that 'samples' is returned as the sample class. def __getitem__(self, item): result = super().__getitem__(item) if item == 'samples': # Here, we need to avoid our own redefinition of view. return super(ArrayDistribution, result).view(self._samples_cls) elif isinstance(result, np.void): return result.view((ScalarDistribution, result.dtype)) else: return result class _DistributionRepr: def __repr__(self): reprarr = repr(self.distribution) if reprarr.endswith('>'): firstspace = reprarr.find(' ') reprarr = reprarr[firstspace+1:-1] # :-1] removes the ending '>' return '<{} {} with n_samples={}>'.format(self.__class__.__name__, reprarr, self.n_samples) else: # numpy array-like firstparen = reprarr.find('(') reprarr = reprarr[firstparen:] return f'{self.__class__.__name__}{reprarr} with n_samples={self.n_samples}' return reprarr def __str__(self): distrstr = str(self.distribution) toadd = f' with n_samples={self.n_samples}' return distrstr + toadd def _repr_latex_(self): if hasattr(self.distribution, '_repr_latex_'): superlatex = self.distribution._repr_latex_() toadd = fr', \; n_{{\rm samp}}={self.n_samples}' return superlatex[:-1] + toadd + superlatex[-1] else: return None class NdarrayDistribution(_DistributionRepr, ArrayDistribution): pass # Ensure our base NdarrayDistribution is known. Distribution._generated_subclasses[np.ndarray] = NdarrayDistribution