备注
单击 here 下载完整的示例代码或通过活页夹在浏览器中运行此示例
基本矩阵估计¶
这个例子演示了如何稳健地估计 epipolar geometry (立体视觉的几何体)在两个视图之间使用稀疏球体要素对应。
这个 fundamental matrix 关联一对未校准图像之间的对应点。该矩阵将一幅图像中的均匀图像点转换为另一幅图像中的核线。
未校准意味着两台相机的本征校准(焦距、像素偏斜、主点)未知。因此,基本矩阵使得能够对捕获的场景进行投影3D重建。如果校准是已知的,则估计基本矩阵使得能够对捕获的场景进行度量3D重建。

输出:
Number of matches: 223
Number of inliers: 160
import numpy as np
from skimage import data
from skimage.color import rgb2gray
from skimage.feature import match_descriptors, ORB, plot_matches
from skimage.measure import ransac
from skimage.transform import FundamentalMatrixTransform
import matplotlib.pyplot as plt
np.random.seed(0)
img_left, img_right, groundtruth_disp = data.stereo_motorcycle()
img_left, img_right = map(rgb2gray, (img_left, img_right))
# Find sparse feature correspondences between left and right image.
descriptor_extractor = ORB()
descriptor_extractor.detect_and_extract(img_left)
keypoints_left = descriptor_extractor.keypoints
descriptors_left = descriptor_extractor.descriptors
descriptor_extractor.detect_and_extract(img_right)
keypoints_right = descriptor_extractor.keypoints
descriptors_right = descriptor_extractor.descriptors
matches = match_descriptors(descriptors_left, descriptors_right,
cross_check=True)
# Estimate the epipolar geometry between the left and right image.
model, inliers = ransac((keypoints_left[matches[:, 0]],
keypoints_right[matches[:, 1]]),
FundamentalMatrixTransform, min_samples=8,
residual_threshold=1, max_trials=5000)
inlier_keypoints_left = keypoints_left[matches[inliers, 0]]
inlier_keypoints_right = keypoints_right[matches[inliers, 1]]
print(f"Number of matches: {matches.shape[0]}")
print(f"Number of inliers: {inliers.sum()}")
# Compare estimated sparse disparities to the dense ground-truth disparities.
disp = inlier_keypoints_left[:, 1] - inlier_keypoints_right[:, 1]
disp_coords = np.round(inlier_keypoints_left).astype(np.int64)
disp_idxs = np.ravel_multi_index(disp_coords.T, groundtruth_disp.shape)
disp_error = np.abs(groundtruth_disp.ravel()[disp_idxs] - disp)
disp_error = disp_error[np.isfinite(disp_error)]
# Visualize the results.
fig, ax = plt.subplots(nrows=2, ncols=1)
plt.gray()
plot_matches(ax[0], img_left, img_right, keypoints_left, keypoints_right,
matches[inliers], only_matches=True)
ax[0].axis("off")
ax[0].set_title("Inlier correspondences")
ax[1].hist(disp_error)
ax[1].set_title("Histogram of disparity errors")
plt.show()
脚本的总运行时间: (0分2.252秒)