备注
单击 here 下载完整的示例代码或通过活页夹在浏览器中运行此示例
尼布莱克和索沃拉阈值¶
NiBlack和Sauvola阈值是局部阈值技术,对于背景不均匀的图像非常有用,尤其是对于文本识别 1, 2. 不是为整个图像计算单个全局阈值,而是通过使用特定公式为每个像素计算多个阈值,这些公式考虑了局部邻域(由以像素为中心的窗口定义)的平均和标准偏差。
在这里,我们使用这些算法对图像进行二值化,并将其与常见的全局阈值技术进行比较。参数 window_size 确定包含周围像素的窗口的大小。
- 1
尼布莱克,W(1986),数字图像处理导论,普伦蒂斯霍尔。
- 2
J.Sauvola和M.Pietikainen,<自适应文档图像二值化>,《模式识别》33(2),第225-236页,2000。 DOI:10.1016/S0031-3203(99)00055-2

import matplotlib
import matplotlib.pyplot as plt
from skimage.data import page
from skimage.filters import (threshold_otsu, threshold_niblack,
threshold_sauvola)
matplotlib.rcParams['font.size'] = 9
image = page()
binary_global = image > threshold_otsu(image)
window_size = 25
thresh_niblack = threshold_niblack(image, window_size=window_size, k=0.8)
thresh_sauvola = threshold_sauvola(image, window_size=window_size)
binary_niblack = image > thresh_niblack
binary_sauvola = image > thresh_sauvola
plt.figure(figsize=(8, 7))
plt.subplot(2, 2, 1)
plt.imshow(image, cmap=plt.cm.gray)
plt.title('Original')
plt.axis('off')
plt.subplot(2, 2, 2)
plt.title('Global Threshold')
plt.imshow(binary_global, cmap=plt.cm.gray)
plt.axis('off')
plt.subplot(2, 2, 3)
plt.imshow(binary_niblack, cmap=plt.cm.gray)
plt.title('Niblack Threshold')
plt.axis('off')
plt.subplot(2, 2, 4)
plt.imshow(binary_sauvola, cmap=plt.cm.gray)
plt.title('Sauvola Threshold')
plt.axis('off')
plt.show()
脚本的总运行时间: (0分0.124秒)